Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Medicine
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Comprehensive gene expression microarray analysis of Ets-1 blockade in PC3 prostate cancer cells and correlations with prostate cancer tissues: Insights into genes involved in the metastatic cascade

Authors: David, Adler; Andreas, Lindstrot; Berit, Langer; Reinhard, Buettner; Nicolas, Wernert;

Comprehensive gene expression microarray analysis of Ets-1 blockade in PC3 prostate cancer cells and correlations with prostate cancer tissues: Insights into genes involved in the metastatic cascade

Abstract

Ets-1 is the prototype of the ETS family of transcription factors and is suggested to play an important role in the malignant progression of prostatic carcinomas. Therefore, in this study we investigated the effect of blocking Ets-1 in PC3 prostate cancer cells on genes involved in the metastatic cascade, and correlated these findings with prostate cancer tissues. Two stable PC3 cell cultures were established by transfection with either an Ets-1 inverse antisense expression vector or a mock control vector. The effect of blocking Ets-1 on genes involved in the metastatic cascade was assessed by a comprehensive gene expression microarray analysis of Ets-1 inverse and mock control cells. Correlating the sets of genes found in the PC3 microarray data with prostate cancer tissues was performed by verifying the genes in a comprehensive gene expression microarray analysis of RNA extracted from laser microdissected normal prostate glands and from carcinoma glands taken from prostate cancer patients. Western blot analysis confirmed the presence of Ets-1 in mock cells and its absence in Ets-1 inverse cells. In the Ets-1 blockade microarray, many differentially expressed genes were found; however, only genes with a greater than 10-fold up- or down-regulation between the Ets-1 blockade and mock control were considered significant. The genes were placed into four groups that play a role in the so-called metastatic cascade based on their known functions in proliferation, apoptosis, migration and angiogenesis. The genes found in the Ets-1 blockade microarray analysis were verified for their presence in the microarray analysis of prostate cancer tissues. Genes found in the microarray analysis of prostate cancer tissues with an >2-fold change and a p-value <0.01 were considered significant. We identified sets of genes that are involved in the metastatic cascade and are known to be implicated in prostate cancer to show changes in the expression patterns due to the Ets-1 blockade in PC3 cells. Correlating these sets of genes with the findings in prostate cancer tissues, we identified 16 genes that are up- or down-regulated in healthy compared to tumor prostate glands. Further investigation revealed that 4 out of the 16 genes have been reported to be regulated by members of the ETS family. These findings provide in vitro and in vivo evidence for the importance of Ets-1 in the development and progression of prostate cancer.

Keywords

Male, Genome, Human, Gene Expression Profiling, Prostatic Neoplasms, Gene Expression Regulation, Neoplastic, Proto-Oncogene Protein c-ets-1, Tumor Cells, Cultured, Humans, RNA, Messenger, Neoplasm Metastasis, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
bronze
Related to Research communities
Cancer Research