Downloads provided by UsageCountsPredicting Antibody Neutralization Efficacy in Hypermutated Epitopes Using Monte Carlo Simulations
Predicting Antibody Neutralization Efficacy in Hypermutated Epitopes Using Monte Carlo Simulations
Human Immunodeficiency Virus 1 (HIV-1) evades adaptive immunity by means of its extremely high mutation rate, which allows the HIV envelope glycoprotein to continuously escape from the action of antibodies. However, some broadly neutralizing antibodies (bNAbs) targeting specific viral regions show the ability to block the infectivity of a large number of viral variants. The discovery of these antibodies opens new avenues in anti-HIV therapy; however, they are still suboptimal tools as their amplitude of action ranges between 50% and 90% of viral variants. In this context, being able to discriminate between sensitive and resistant strains to an antibody would be of great interest for the design of optimal clinical antibody treatments and to engineer potent bNAbs for clinical use. Here, we describe a hierarchical procedure to predict the antibody neutralization efficacy of multiple viral isolates to three well-known anti-CD4bs bNAbs: VRC01, NIH45-46 and 3BNC117. Our method consists of simulating the three-dimensional binding process between the gp120 and the antibody by using Protein Energy Landscape Exploration (PELE), a Monte Carlo stochastic approach. Our results clearly indicate that the binding profiles of sensitive and resistant strains to a bNAb behave differently, showing the latter’s weaker binding profiles, that can be exploited for predicting antibody neutralization efficacy in hypermutated HIV-1 strains.
:Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC], Mètode de, HIV (Viruses), Montecarlo, Mètode de, computational modelling, Computer simulation, Montecarlo, Antibodies, antibody binding efficacy, Article, Monte Carlo simulations, AIDS, Computational modelling, Simulació per ordinador, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica, HIV-1, Antibody binding efficacy, CD4bs antibodies
:Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC], Mètode de, HIV (Viruses), Montecarlo, Mètode de, computational modelling, Computer simulation, Montecarlo, Antibodies, antibody binding efficacy, Article, Monte Carlo simulations, AIDS, Computational modelling, Simulació per ordinador, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica, HIV-1, Antibody binding efficacy, CD4bs antibodies
4 Research products, page 1 of 1
- 2013IsRelatedTo
- 2010IsRelatedTo
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 29 download downloads 23 - 29views23downloads
Views provided by UsageCounts
Downloads provided by UsageCounts
