Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Microorganismsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microorganisms
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microorganisms
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Microorganisms
Article . 2020
Data sources: DOAJ
versions View all 5 versions

Root Herbivory: Grass Species, Epichloë Endophytes and Moisture Status Make a Difference

Authors: Alison J. Popay; Joanne G. Jensen; Wade J. Mace;

Root Herbivory: Grass Species, Epichloë Endophytes and Moisture Status Make a Difference

Abstract

The root-feeding scarab insect Costelytra giveni causes severe damage to pasture ecosystems in New Zealand. Loline alkaloids produced by some Epichloë endophytes deter this insect. In two experiments, tall fescue infected with E. coenophiala, strain AR584, and endophyte-free (Nil) controls were subjected to pulse drought stress (DS) or well-watered conditions (WW). The second experiment also included meadow fescue infected with E. uncinata. After 4–6 weeks exposure to the different conditions, roots were excised and fed to C. giveni larvae for 7 days. Relative root consumption (RC), frass production, and relative weight change (RWC) of larvae were measured and the loline content of roots determined. RC and frass output were higher for larvae feeding on Nil DS tall fescue than WW and reduced by AR584. RWC was also greater on DS than on WW Nil plants but reduced by endophyte only in DS plants. RC, frass output, and RWC of larvae were reduced by endophyte in DS and WW meadow fescue, but the effect was greater for WW plants. Loline alkaloid concentration in roots was significantly higher in DS than WW tall fescue in Experiment I but higher in WW than DS meadow fescue in Experiment II. These experiments have demonstrated that moisture status interacts with endophyte to differentially affect root herbivory in tall fescue and meadow fescue.

Related Organizations
Keywords

Epichloë coenophiala, <i>Costelytra giveni</i>, QH301-705.5, drought stress, Festuca arundinacea, Epichloë uncinata, <i>Festuca pratensis</i>, Costelytra giveni, symbiosis, <i>Epichloë coenophiala</i>, Article, <i>Epichloë uncinata</i>, <i>Festuca arundinacea</i>, loline alkaloids, Festuca pratensis, Biology (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold