Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Sciences
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
License: CC BY
Data sources: Apollo
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2022
Data sources: Apollo
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
Apollo
Article . 2022
Data sources: Datacite
versions View all 10 versions

Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases

Authors: Raha, Animesh Alexander; Biswas, Anwesha; Henderson, James; Chakraborty, Subhojit; Holland, Anthony; Friedland, Robert P; Mukaetova-Ladinska, Elizabeta; +2 Authors

Interplay of Ferritin Accumulation and Ferroportin Loss in Ageing Brain: Implication for Protein Aggregation in Down Syndrome Dementia, Alzheimer’s, and Parkinson’s Diseases

Abstract

Iron accumulates in the ageing brain and in brains with neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Down syndrome (DS) dementia. However, the mechanisms of iron deposition and regional selectivity in the brain are ill-understood. The identification of several proteins that are involved in iron homeostasis, transport, and regulation suggests avenues to explore their function in neurodegenerative diseases. To uncover the molecular mechanisms underlying this association, we investigated the distribution and expression of these key iron proteins in brain tissues of patients with AD, DS, PD, and compared them with age-matched controls. Ferritin is an iron storage protein that is deposited in senile plaques in the AD and DS brain, as well as in neuromelanin-containing neurons in the Lewy bodies in PD brain. The transporter of ferrous iron, Divalent metal protein 1 (DMT1), was observed solely in the capillary endothelium and in astrocytes close to the ventricles with unchanged expression in PD. The principal iron transporter, ferroportin, is strikingly reduced in the AD brain compared to age-matched controls. Extensive blood vessel damage in the basal ganglia and deposition of punctate ferritin heavy chain (FTH) and hepcidin were found in the caudate and putamen within striosomes/matrix in both PD and DS brains. We suggest that downregulation of ferroportin could be a key reason for iron mismanagement through disruption of cellular entry and exit pathways of the endothelium. Membrane damage and subsequent impairment of ferroportin and hepcidin causes oxidative stress that contributes to neurodegeneration seen in DS, AD, and in PD subjects. We further propose that a lack of ferritin contributes to neurodegeneration as a consequence of failure to export toxic metals from the cortex in AD/DS and from the substantia nigra and caudate/putamen in PD brain.

Country
United Kingdom
Keywords

Iron, Down syndrome (DS), Alzheimer’s disease (AD), Article, Alzheimer���s disease (AD), Protein Aggregates, Ferroportin, Hepcidins, Alzheimer Disease, Humans, Cation Transport Proteins, basal ganglia; locus coeruleus; substantia nigra; striosomes/matrix; neurodegeneration; ferritin; hepcidin; Alzheimer’s disease (AD); Parkinson’s disease (PD); Down syndrome (DS), locus coeruleus, ferritin, neurodegeneration, Brain, Neurodegenerative Diseases, Parkinson Disease, Parkinson’s disease (PD), substantia nigra, basal ganglia, Ferritins, Basal ganglia, striosomes/matrix, Parkinson���s disease (PD), hepcidin, Down Syndrome

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Average
Top 1%
Green
gold