Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Haematologicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article
License: publisher-specific license
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Haematologica
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Munin - Open Research Archive
Article . 2013 . Peer-reviewed
versions View all 5 versions

The quantitative level of T315I mutated BCR-ABL predicts for major molecular response to second-line nilotinib or dasatinib treatment in patients with chronic myeloid leukemia

Authors: Lange, Thoralf; Ernst, Thomas; Gruber, Franz; Maier, Jacqueline; Cross, Michael; Müller, Martin C.; Niederwieser, Dietger; +2 Authors

The quantitative level of T315I mutated BCR-ABL predicts for major molecular response to second-line nilotinib or dasatinib treatment in patients with chronic myeloid leukemia

Abstract

The BCR-ABL T315I mutation causes resistance to imatinib, nilotinib and dasatinib in chronic myeloid leukemia. Forty BCR-ABL positive patients with imatinib resistance were analyzed for T315I mutated clones after six months on nilotinib or dasatinib treatment by quantitative allele-specific ligation polymerase chain reaction with a sensitivity of 0.05%. Ligation polymerase chain reaction revealed 10 patients with more than 10(-5) BCR-ABL(T315I%)/GUS (high levels), none of whom achieved major molecular response after 12 months, and a further 8 patients with 10(-5) or below BCR-ABL(T315I%)/GUS (low levels) who all achieved major molecular response (P<0.001). A second independent group showed molecular response in one of 12 patients with high levels and 5 of 8 patients with low levels (P=0.018). Combining the groups resulted in a sensitivity and specificity of 92.9% and 87.5%, respectively. We conclude that the quantitative level of mutant T315I allele is predictive of major molecular response at 12 months on second-line nilotinib or dasatinib treatment. www.clinicaltrials.gov: CT00109707, NCT00384228, CA180013, CA180005 CA180006.

Country
Norway
Keywords

Adult, Male, VDP::Medical disciplines: 700::Clinical medical disciplines: 750::Oncology: 762, Dasatinib, Fusion Proteins, bcr-abl, Antineoplastic Agents, Middle Aged, Prognosis, VDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Onkologi: 762, Thiazoles, Pyrimidines, Treatment Outcome, Drug Resistance, Neoplasm, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, Mutation, Humans, Diseases of the blood and blood-forming organs, Female, RC633-647.5, Protein Kinase Inhibitors, Alleles, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research