Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes
Article
Data sources: UnpayWall
Diabetes
Article . 2004 . Peer-reviewed
Data sources: Crossref
Diabetes
Article . 2005
versions View all 2 versions

Exercise-Induced Changes in Insulin and Glucagon Are Not Required for Enhanced Hepatic Glucose Uptake After Exercise but Influence the Fate of Glucose Within the Liver

Authors: R. Richard Pencek; Patrick T. Fueger; Kareem Jabbour; Freyja D. James; Phillip E. Williams; David H. Wasserman; D. Brooks Lacy;

Exercise-Induced Changes in Insulin and Glucagon Are Not Required for Enhanced Hepatic Glucose Uptake After Exercise but Influence the Fate of Glucose Within the Liver

Abstract

To test whether pancreatic hormonal changes that occur during exercise are necessary for the postexercise enhancement of insulin-stimulated net hepatic glucose uptake, chronically catheterized dogs were exercised on a treadmill or rested for 150 min. At the onset of exercise, somatostatin was infused into a peripheral vein, and insulin and glucagon were infused in the portal vein to maintain basal levels (EX-Basal) or simulate the response to exercise (EX-Sim). Glucose was infused as needed to maintain euglycemia during exercise. After exercise or rest, somatostatin infusion was continued in exercised dogs and initiated in dogs that had remained sedentary. In addition, basal glucagon, glucose, and insulin were infused in the portal vein for 150 min to create a hyperinsulinemic-hyperglycemic clamp in EX-Basal, EX-Sim, and sedentary dogs. Steady-state measurements were made during the final 50 min of the clamp. During exercise, net hepatic glucose output (mg · kg−1 · min−1) rose in EX-Sim (7.6 ± 2.8) but not EX-Basal (1.9 ± 0.3) dogs. During the hyperinsulinemic-hyperglycemic clamp that followed either exercise or rest, net hepatic glucose uptake (mg · kg−1 · min−1) was elevated in both EX-Basal (4.0 ± 0.7) and EX-Sim (4.6 ± 0.5) dogs compared with sedentary dogs (2.0 ± 0.3). Despite this elevation in net hepatic glucose uptake after exercise, glucose incorporation into hepatic glycogen, determined using [3-3H]glucose, was not different in EX-Basal and sedentary dogs, but was 50 ± 30% greater in EX-Sim dogs. Exercise-induced changes in insulin and glucagon, and consequent glycogen depletion, are not required for the increase in net hepatic glucose uptake after exercise but result in a greater fraction of the glucose consumed by the liver being directed to glycogen.

Related Organizations
Keywords

Blood Glucose, Glycerol, Alanine, Biological Transport, Fatty Acids, Nonesterified, Glucagon, Kinetics, Dogs, Glucose, Liver, Physical Conditioning, Animal, Exercise Test, Glucose Clamp Technique, Lactates, Animals, Insulin, Infusions, Intravenous, Somatostatin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Average
bronze