Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

Keeping It Together and Taking It Apart: Structural Investigations of Replisome Complexes Involved in DNA Replication Fork Protection and Termination

Authors: Jenkyn Bedford, Michael;

Keeping It Together and Taking It Apart: Structural Investigations of Replisome Complexes Involved in DNA Replication Fork Protection and Termination

Abstract

DNA replication is an essential cellular process whose dysregulation is implicated in severe human disease, including cancer. Broadly, DNA replication involves the unwinding of the DNA double-helix, allowing DNA polymerases to use each unwound strand as a template for nascent DNA synthesis; the complex molecular machinery responsible for DNA replication is known as the replisome. However, during unwinding and DNA synthesis, the replisome may encounter various obstacles such as DNA damage and tightly-bound proteins, necessitating specific pathways tailored to tolerating and overcoming such hinderances. Upon completion of DNA replication, the replisome is disassembled in a regulated manner. An understanding of DNA replication requires structural knowledge of how the various replisome components assemble to form the replicative machinery. Although significant advances have been made in recent years, facilitated by the development of electron cryo-microscopy (cryo-EM), our understanding of replisome structure remains in its infancy. Here I present high-resolution cryo-EM structures of the most complete replisome complexes to date, which are involved in multiple aspects of DNA replication and replication-coupled processes. First, I describe how four replisome components – the fork protection complex (Csm3-Tof1-Mrc1) plus Ctf4 – associate with the replicative helicase CMG. The fork protection complex is involved in achieving maximal rates of DNA replication, as well as performing roles in protecting replication forks from varied forms of replication stress. Ctf4 acts as a structural hub recruiting factors required for cohesion establishment and epigenetic inheritance. Second, I discuss structural insights into the regulation of replisome disassembly as the final stage of DNA replication, presenting the first structure of a replisome complex which has translocated onto double-stranded DNA and is bound by the termination-specific E3 ubiquitin ligase, SCFDia2.

Country
United Kingdom
Related Organizations
Keywords

CMG, SCFDia2, Fork protection complex, DNA, Disassembly, Ctf4, DNA replication, Replisome, Cryo-EM

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Cancer Research