Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The International Journal Of Cell Cloning
Article . 2007 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Identification of a Novel Putative Gastrointestinal Stem Cell and Adenoma Stem Cell Marker, Doublecortin and CaM Kinase-Like-1, Following Radiation Injury and in Adenomatous Polyposis Coli/Multiple Intestinal Neoplasia Mice

Authors: Randal, May; Terrence E, Riehl; Clayton, Hunt; Sripathi M, Sureban; Shrikant, Anant; Courtney W, Houchen;

Identification of a Novel Putative Gastrointestinal Stem Cell and Adenoma Stem Cell Marker, Doublecortin and CaM Kinase-Like-1, Following Radiation Injury and in Adenomatous Polyposis Coli/Multiple Intestinal Neoplasia Mice

Abstract

Abstract In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear β-catenin in normal-appearing intestine. However, β-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of β-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents. Disclosure of potential conflicts of interest is found at the end of this article.

Keywords

Stem Cells, RNA-Binding Proteins, Nerve Tissue Proteins, Protein Serine-Threonine Kinases, Gastrointestinal Tract, Intestines, Mice, Protein Transport, Doublecortin-Like Kinases, Adenomatous Polyposis Coli, Radiation, Ionizing, Intestinal Neoplasms, Biomarkers, Tumor, Animals, Regeneration, Intestinal Mucosa, beta Catenin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    254
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
254
Top 1%
Top 1%
Top 1%
hybrid