Comparative Genomics of a Plant-Pathogenic Fungus,Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence
Comparative Genomics of a Plant-Pathogenic Fungus,Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence
AbstractPyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
- University of Massachusetts System United States
- Centre national de la recherche scientifique France
- University of British Columbia Canada
- University of Wisconsin–Madison United States
- University of Wisconsin–Oshkosh United States
570, wheat (Triticum aestivum), Molecular Sequence Data, anastomosis, Investigations, 630, Evolution, Molecular, Ascomycota, ToxA, Gene Duplication, ToxB, histone H3 transduplication, Phylogeny, Triticum, DNA Primers, Likelihood Functions, Base Sequence, Models, Genetic, copy number variation, Chromosome Mapping, Genetic Variation, Molecular Sequence Annotation, Genomics, Sequence Analysis, DNA, Mycotoxins, Cytogenetic Analysis, DNA Transposable Elements, Genome, Fungal
570, wheat (Triticum aestivum), Molecular Sequence Data, anastomosis, Investigations, 630, Evolution, Molecular, Ascomycota, ToxA, Gene Duplication, ToxB, histone H3 transduplication, Phylogeny, Triticum, DNA Primers, Likelihood Functions, Base Sequence, Models, Genetic, copy number variation, Chromosome Mapping, Genetic Variation, Molecular Sequence Annotation, Genomics, Sequence Analysis, DNA, Mycotoxins, Cytogenetic Analysis, DNA Transposable Elements, Genome, Fungal
1,071 Research products, page 1 of 108
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).142 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
