Regulation of Cardiac L-Type Ca2+ Current in Na+-Ca2+ Exchanger Knockout Mice: Functional Coupling of the Ca2+ Channel and the Na+-Ca2+ Exchanger
Regulation of Cardiac L-Type Ca2+ Current in Na+-Ca2+ Exchanger Knockout Mice: Functional Coupling of the Ca2+ Channel and the Na+-Ca2+ Exchanger
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.
- University of California, Los Angeles United States
Mice, Knockout, Patch-Clamp Techniques, Calcium Channels, L-Type, Biophysics, In Vitro Techniques, Sodium-Calcium Exchanger, Mice, Sarcolemma, Animals, Calcium, Myocytes, Cardiac, Ion Channel Gating
Mice, Knockout, Patch-Clamp Techniques, Calcium Channels, L-Type, Biophysics, In Vitro Techniques, Sodium-Calcium Exchanger, Mice, Sarcolemma, Animals, Calcium, Myocytes, Cardiac, Ion Channel Gating
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
