Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrine Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrine Journal
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrine Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of Differentially Expressed Genes During Proliferative Response of the Liver Induced by Follistatin

Authors: Medina, J.; Yamada, S.; Kojima, I.;

Identification of Differentially Expressed Genes During Proliferative Response of the Liver Induced by Follistatin

Abstract

The liver mass is controlled strictly and maintained constant in normal and pathological situations. An exception is observed after an administration of follistatin, which induces proliferation in intact liver. In the present study, we identified genes differentially expressed in proliferating liver caused by overexpression of follistatin-288. Adenovirus vector encoding follistatin-288 (Ad-FS) or green fluorescent protein was injected intraperitoneally in rats. Changes in the liver weight, expression of follistatin and nuclear bromodeoxyuridine labeling were measured. Samples taken on day 5 and day 7 were used to prepare RNA for microarray analysis. The expression of the genes was confirmed by quantitative reverse transcriptase PCR. After the injection of Ad-FS follistatin mRNA peaked on day 3, which was followed by progressive increase in the protein expression. A peak in bromodeoxyuridine labeling was observed on day 7. Microarray data from day 5 and day 7 samples showed that follistatin modified the expression of 907 genes, of which 575 were overexpressed and 332 were downregulated taking into consideration a two fold change reference compared to control rats. In particular, significant increases and time related changes in gene expression after the Ad-FS injection were found in nine genes including growth differentiation factor 15 and fibroblast growth factor 21. This study confirmed that follistatin induced proliferation in intact liver, and identified candidate genes involved in follistatin-induced liver cell growth.

Keywords

Male, Follistatin, Growth Differentiation Factor 15, Time Factors, Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Profiling, Gene Transfer Techniques, Growth, Organ Size, Adenoviridae, Rats, Activin, Fibroblast Growth Factors, Rats, Sprague-Dawley, Gene Expression Regulation, Liver, Liver regeneration, Animals, RNA, Messenger, Cell Proliferation, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold