Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2020
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brage NMBU
Article . 2020
Data sources: Brage NMBU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brage NMBU
Article . 2020
Data sources: Brage NMBU
https://dx.doi.org/10.60692/hm...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/s3...
Other literature type . 2020
Data sources: Datacite
versions View all 8 versions

Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity

يكشف توصيف اثنين من الكائنات الحية المحورة من فصيلة AA9 من الرشاشية التمرية مع أنشطة متميزة على الزيلوغلوكان عن اختلافات هيكلية مرتبطة بخصوصية الانقسام
Authors: Vincent G. H. Eijsink; Anikó Várnai; Dejan M. Petrović; Robert N.G. Miller; Marcos Mota do Carmo Costa; Edivaldo Ximenes Ferreira Filho; Glaucia Emy Okida Midorikawa; +3 Authors

Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity

Abstract

Aspergillus tamarii pousse abondamment dans le compostage naturel des déchets de fibres de l'industrie textile et présente un grand potentiel de décomposition de la biomasse. Parmi les principales enzymes (hémi) cellulosiques actives dans les sécrétomes des champignons de dégradation de la biomasse figurent les polysaccharides monooxygénases lytiques (LPMO). En catalysant le clivage oxydatif des liaisons glycosidiques, les LPMO favorisent l'activité d'autres enzymes dégradant la lignocellulose. Ici, nous avons analysé le potentiel catalytique de deux des sept LPMO de type AA9 qui ont été détectés dans les données de transcriptome récemment publiées pour A. tamarii, à savoir AtAA9A et AtAA9B. L'analyse des produits générés à partir de cellulose a révélé que l'AtAA9A est une enzyme oxydante en C4, tandis que l'AtAA9B a donné un mélange de produits oxydés en C1 et en C4. AtAA9A était également actif sur le cellopentaose et le cellohexaose. Les deux enzymes ont également clivé le squelette β-(1→4)-glucane du xyloglucane de tamarin, mais avec des schémas de clivage différents. AtAA9A a clivé le squelette du xyloglucane uniquement à côté d'unités glucosyle non substituées, tandis que AtAA9B a produit des profils de produits indiquant qu'il peut cliver le squelette du xyloglucane indépendamment des substitutions. Sur la base de ces nouveaux résultats et du catalogue en expansion des LPMO AA9 actifs sur le xyloglucane et les oligosaccharides, nous discutons des propriétés structurelles possibles qui pourraient sous-tendre les différences fonctionnelles observées. Les résultats corroborent les preuves que les champignons filamenteux ont développé des LPMO AA9 avec des spécificités et des régiosélectivités de substrat distinctes, qui ont probablement des fonctions complémentaires lors de la dégradation de la biomasse.

Aspergillus tamarii crece abundantemente en el compostaje natural de fibras de desecho de la industria textil y tiene un gran potencial en la descomposición de la biomasa. Entre las enzimas clave activas en la (hemi) celulosa en los secretomas de los hongos que degradan la biomasa se encuentran las polisacárido monooxigenasas líticas (LPMO). Al catalizar la escisión oxidativa de los enlaces glucósidos, los LPMO promueven la actividad de otras enzimas que degradan la lignocelulosa. Aquí, analizamos el potencial catalítico de dos de los siete LPMO de tipo AA9 que se detectaron en datos de transcriptoma recientemente publicados para A. tamarii, a saber, AtAA9A y AtAA9B. El análisis de los productos generados a partir de celulosa reveló que AtAA9A es una enzima oxidante C4, mientras que AtAA9B produjo una mezcla de productos oxidados C1 y C4. AtAA9A también fue activo en celopentaosa y celohexaosa. Ambas enzimas también escindieron la estructura principal de β-(1→4)-glucano del xiloglucano de tamarindo, pero con diferentes patrones de escisión. AtAA9A escindió la estructura principal de xiloglucano solo junto a las unidades de glucosilo no sustituidas, mientras que AtAA9B produjo perfiles de producto que indican que puede escindir la estructura principal de xiloglucano independientemente de las sustituciones. Basándonos en estos nuevos resultados y en el catálogo en expansión de los LPMO AA9 activos en xiloglucano y oligosacárido, discutimos las posibles propiedades estructurales que podrían subyacer a las diferencias funcionales observadas. Los resultados corroboran la evidencia de que los hongos filamentosos han desarrollado LPMO AA9 con distintas especificidades de sustrato y regioselectividades, que probablemente tengan funciones complementarias durante la degradación de la biomasa.

Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the β-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.

تنمو الرشاشية التمر بوفرة في تسميد ألياف النفايات بشكل طبيعي في صناعة النسيج ولديها إمكانات كبيرة في تحلل الكتلة الحيوية. من بين الإنزيمات الرئيسية النشطة للسليلوز (هيمي) في إفرازات الفطريات المتحللة للكتلة الحيوية هي أحاديات أكسجين عديد السكاريد المحللة (LPMOs). من خلال تحفيز الانقسام التأكسدي لروابط الجليكوزيد، تعزز الكائنات الحية المحورة نشاط الإنزيمات الأخرى التي تحلل الليجنوسلولوز. هنا، قمنا بتحليل الإمكانات التحفيزية لاثنين من الكائنات الحية المحورة السبعة من نوع AA9 التي تم اكتشافها في بيانات النسخ المنشورة مؤخرًا لـ A. tamarii، وهي AtAA9A و AtAA9B. كشف تحليل المنتجات المتولدة من السليلوز أن AtAA9A هو إنزيم مؤكسد C4، في حين أنتج AtAA9B مزيجًا من المنتجات المؤكسدة C1 و C4. كان ATAA9A نشطًا أيضًا في السيلوبنتاوز والسيلوهيكساوز. قام كلا الإنزيمين أيضًا بشق العمود الفقري β-(→ 14 )- glucan لتمر هندي زيلوغلوكان، ولكن بأنماط تشقق مختلفة. شطر AtAA9A العمود الفقري للزيلوغلوكان فقط بجوار وحدات الجلوكوزيل غير المستبدلة، بينما أنتج AtAA9B ملفات تعريف المنتج التي تشير إلى أنه يمكن أن يشق العمود الفقري للزيلوغلوكان بغض النظر عن البدائل. بناءً على هذه النتائج الجديدة وعلى الكتالوج الموسع للكائنات الحية المحورة النشطة من الزيلوغلوكان والسكريات قليلة السكاريد AA9، نناقش الخصائص الهيكلية المحتملة التي يمكن أن تكمن وراء الاختلافات الوظيفية الملحوظة. تؤكد النتائج الأدلة على أن الفطريات الخيطية قد طورت كائنات حية محورة AA9 ذات خصائص ركيزة متميزة وانتقائية، والتي من المحتمل أن يكون لها وظائف تكميلية أثناء تدهور الكتلة الحيوية.

Keywords

Fracture (geology), Plant Science, Biochemistry, Mixed Function Oxygenases, Substrate Specificity, Agricultural and Biological Sciences, Engineering, Cleavage (geology), Cloning, Molecular, Polysaccharide, Glucans, Chromatography, High Pressure Liquid, Phylogeny, Cell wall, Q, R, Lignin Degradation by Enzymes in Bioremediation, Life Sciences, Glycan, Recombinant Proteins, Chemistry, Aspergillus, Glycoside hydrolase, Physical Sciences, Medicine, Xylans, Technologies for Biofuel Production from Biomass, Oxidation-Reduction, Research Article, Biotechnology, Science, Biomedical Engineering, FOS: Medical engineering, Microbiology, Fungal Proteins, Polysaccharides, Biochemistry, Genetics and Molecular Biology, Amino Acid Sequence, Xyloglucan, Cellulose, Biology, Cellulase Enzymes, Binding Sites, Paleontology, Enzyme, FOS: Biological sciences, Microbial Enzymes and Biotechnological Applications, Glycoprotein, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
gold