Intrauterine Ischemic Reperfusion Switches the Fetal Transcriptional Pattern from HIF-1α- to P53-Dependent Regulation in the Murine Brain
Intrauterine Ischemic Reperfusion Switches the Fetal Transcriptional Pattern from HIF-1α- to P53-Dependent Regulation in the Murine Brain
Ischemic reperfusion (IR) during the perinatal period is a known causative factor of fetal brain damage. So far, both morphologic and histologic evidence has shown that fetal brain damage can be observed only several hours to days after an IR insult has occurred. Therefore, to prevent fetal brain damage under these circumstances, a more detailed understanding of the underlying molecular mechanisms involved during an acute response to IR is necessary. In the present work, pregnant mice were exposed to IR on day 18 of gestation by clipping one side of the maternal uterine horn. Simultaneous fetal electrocardiography was performed during the procedure to verify that conditions resulting in fetal brain damage were met. Fetal brain sampling within 30 minutes after IR insult revealed molecular evidence that a fetal response was indeed triggered in the form of inhibition of the Akt-mTOR-S6 synthesis pathway. Interestingly, significant changes in mRNA levels for both HIF-1α and p53 were apparent and gene regulation patterns were observed to switch from a HIF-1α-dependent to a p53-dependent process. Moreover, pre-treatment with pifithrin-α, a p53 inhibitor, inhibited protein synthesis almost completely, revealing the possibility of preventing fetal brain damage by prophylactic pifithrin-α treatment.
- Tohoku University Hospital Japan
- Tohoku University Japan
Science, TOR Serine-Threonine Kinases, Q, Uterus, R, Hypoxia-Inducible Factor 1, alpha Subunit, Mice, Fetus, Gene Expression Regulation, Pregnancy, Brain Injuries, Reperfusion, Medicine, Animals, Female, Benzothiazoles, Tumor Suppressor Protein p53, Research Article, Signal Transduction, Toluene
Science, TOR Serine-Threonine Kinases, Q, Uterus, R, Hypoxia-Inducible Factor 1, alpha Subunit, Mice, Fetus, Gene Expression Regulation, Pregnancy, Brain Injuries, Reperfusion, Medicine, Animals, Female, Benzothiazoles, Tumor Suppressor Protein p53, Research Article, Signal Transduction, Toluene
25 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
