Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
Data sources: DOAJ
versions View all 4 versions

Deletion of Mesenchymal Glucocorticoid Receptor Attenuates Embryonic Lung Development and Abdominal Wall Closure

Authors: Aiqing Li; Rowan Hardy; Shihani Stoner; Jan Tuckermann; Markus Seibel; Hong Zhou;

Deletion of Mesenchymal Glucocorticoid Receptor Attenuates Embryonic Lung Development and Abdominal Wall Closure

Abstract

As a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors, the glucocorticoid receptor (GR) is essential for normal embryonic development. To date, the role of mesenchymal glucocorticoid signaling during development has not been fully elucidated. In the present study, we investigated the role of the GR during embryogenesis specifically in mesenchymal tissues. To this aim, we crossed GRflox mice with Dermo1-Cre mice to generate GR(Dermo1) mice, where the GR gene was deleted within mesenchymal cells. Compared to their wild type littermates, GR(Dermo1) mice displayed severe pulmonary atelectasis, defects in abdominal wall formation resulting in intestinal herniation, abnormal extracellular matrix synthesis in connective tissues and high postnatal lethality. Lungs of GR(Dermo1) mice failed to progress from the canalicular to saccular stage, as evidenced by the presence of immature air sacs, thickened interstitial mesenchyme and an underdeveloped vascular network between E17.5 and E18.5. Furthermore, myofibroblasts and vascular smooth muscle cells, although present in normal numbers in GR(Dermo1) animals, were characterized by significantly reduced elastin synthesis, whilst epithelial lining cells of the immature saccules were poorly differentiated. A marked reduction in normal elastin and collagen deposits were also observed in connective tissues adjacent to the umbilical hernia. This study demonstrates that eliminating the GR in cells of the mesenchymal lineage results in marked effects on interstitial fibroblast function, including a significant decrease in elastin synthesis. This results in lung atelectasis and postnatal lethality, as well as additional and hitherto unrecognized developmental defects in abdominal wall formation. In addition, altered glucocorticoid signaling in the mesenchyme attenuates normal lung epithelial differentiation.

Keywords

Science, Q, Abdominal Wall, R, Embryonic Development, Gene Expression Regulation, Developmental, Mice, Transgenic, Immunohistochemistry, Mesoderm, Mice, Receptors, Glucocorticoid, Medicine, Animals, Lung, Cells, Cultured, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
gold