Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
Data sources: DOAJ
versions View all 4 versions

Treatment with Activated Protein C (aPC) Is Protective during the Development of Myocardial Fibrosis: An Angiotensin II Infusion Model in Mice

Authors: Mryanda J Sopel; Nicole L Rosin; Alec G Falkenham; Michael Bezuhly; Charles T Esmon; Timothy D G Lee; Robert S Liwski; +1 Authors

Treatment with Activated Protein C (aPC) Is Protective during the Development of Myocardial Fibrosis: An Angiotensin II Infusion Model in Mice

Abstract

Myocardial fibrosis contributes to the development of heart failure. Activated Protein C (aPC) is a circulating anticoagulant with anti-inflammatory and cytoprotective properties. Using a model of myocardial fibrosis second to Angiotensin II (AngII) infusion, we investigated the novel therapeutic function aPC in the development of fibrosis.C57Bl/6 and Tie2-EPCR mice were infused with AngII (2.0 µg/kg/min), AngII and aPC (0.4 µg/kg/min) or saline for 3d. Hearts were harvested and processed for analysis or used for cellular isolation. Basic histology and collagen deposition were assessed using histologic stains. Transcript levels of molecular mediators were analyzed by quantitative RT-PCR. Mice infused with AngII exhibited multifocal areas of myocardial cellular infiltration associated with significant collagen deposition compared to saline control animals (p<0.01). AngII-aPC infusion inhibited this cellular infiltration and the corresponding collagen deposition. AngII-aPC infusion also inhibited significant expression of the pro-fibrotic cytokines TGF-β1, CTGF and PDGF found in AngII only infused animals (p<0.05). aPC signals through its receptor, EPCR. Using Tie2-EPCR animals, where endothelial cells over-express EPCR and exhibit enhanced aPC-EPCR signaling, no significant reduction in cellular infiltration or fibrosis was evident with AngII infusion suggesting aPC-mediate protection is endothelial cell independent. Isolated infiltrating cells expressed significant EPCR transcripts suggesting a direct effect on infiltrating cells.This data indicates that aPC treatment abrogates the fibrogenic response to AngII. aPC does not appear to confer protection by stimulating the endothelium but by acting directly on the infiltrating cells, potentially inhibiting migration or activation.

Keywords

Male, Base Sequence, Heart Diseases, Reverse Transcriptase Polymerase Chain Reaction, Science, Angiotensin II, Q, R, Fluorescent Antibody Technique, Fibrosis, Mice, Inbred C57BL, Disease Models, Animal, Mice, In Situ Nick-End Labeling, Medicine, Animals, Cytokines, Research Article, DNA Primers, Protein C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
gold