Patterned Neuroprotection in the Inpp4awbl Mutant Mouse Cerebellum Correlates with the Expression of Eaat4
Patterned Neuroprotection in the Inpp4awbl Mutant Mouse Cerebellum Correlates with the Expression of Eaat4
The weeble mutant mouse has a frame shift mutation in inositol polyphosphate 4-phosphatase type I (Inpp4a). The phenotype is characterized by an early onset cerebellar ataxia and neurodegeneration, especially apparent in the Purkinje cells. Purkinje cell loss is a common pathological finding in many human and mouse ataxic disorders. Here we show that in the Inpp4a(wbl) mutant, Purkinje cells are lost in a specific temporal and spatial pattern. Loss occurs early in postnatal development; however, prior to the appearance of climbing fibers in the developing molecular layer, the mutant has a normal complement of Purkinje cells and they are properly positioned. Degeneration and reactive gliosis are present at postnatal day 5 and progress rapidly in a defined pattern of patches; however, Inpp4a is expressed uniformly across Purkinje cells. In late stage mutants, patches of surviving Purkinje cells appear remarkably normal with the exception that the climbing fibers have been excessively eliminated. Surviving Purkinje cells express Eaat4, a glutamate transporter that is differentially expressed in subsets of Purkinje cells during development and into adult stages. Prior to Purkinje cell loss, reactive gliosis and dendritic atrophy can be seen in Eaat4 negative stripes. Our data suggest that Purkinje cell loss in the Inpp4a(wbl) mutant is due to glutamate excitotoxicity initiated by the climbing fiber, and that Eaat4 may exert a protective effect.
- University of Nebraska Medical Center United States
Neurons, Time Factors, Wasting Syndrome, Science, Q, R, Weaning, Survival Analysis, Phosphoric Monoester Hydrolases, Mice, Mice, Neurologic Mutants, Purkinje Cells, Phenotype, Cytoprotection, Cerebellum, Medicine, Animals, Excitatory Amino Acid Transporter 4, Research Article
Neurons, Time Factors, Wasting Syndrome, Science, Q, R, Weaning, Survival Analysis, Phosphoric Monoester Hydrolases, Mice, Mice, Neurologic Mutants, Purkinje Cells, Phenotype, Cytoprotection, Cerebellum, Medicine, Animals, Excitatory Amino Acid Transporter 4, Research Article
16 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
