Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity

Authors: Mathieu Blanchette; Philippe Cloutier; Benoit Coulombe; Denis Faubert; Mathieu Lavallée-Adam;

A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity

Abstract

Methylation is a post-translational modification that can affect numerous features of proteins, notably cellular localization, turnover, activity, and molecular interactions. Recent genome-wide analyses have considerably extended the list of human genes encoding putative methyltransferases. Studies on protein methyltransferases have revealed that the regulatory function of methylation is not limited to epigenetics, with many non-histone substrates now being discovered. We present here our findings on a novel family of distantly related putative methyltransferases. Affinity purification coupled to mass spectrometry shows a marked preference for these proteins to associate with various chaperones. Based on the spectral data, we were able to identify methylation sites in substrates, notably trimethylation of K135 of KIN/Kin17, K561 of HSPA8/Hsc70 as well as corresponding lysine residues in other Hsp70 isoforms, and K315 of VCP/p97. All modification sites were subsequently confirmed in vitro. In the case of VCP, methylation by METTL21D was stimulated by the addition of the UBX cofactor ASPSCR1, which we show directly interacts with the methyltransferase. This stimulatory effect was lost when we used VCP mutants (R155H, R159G, and R191Q) known to cause Inclusion Body Myopathy with Paget's disease of bone and Fronto-temporal Dementia (IBMPFD) and/or familial Amyotrophic Lateral Sclerosis (ALS). Lysine 315 falls in proximity to the Walker B motif of VCP's first ATPase/D1 domain. Our results indicate that methylation of this site negatively impacts its ATPase activity. Overall, this report uncovers a new role for protein methylation as a regulatory pathway for molecular chaperones and defines a novel regulatory mechanism for the chaperone VCP, whose deregulation is causative of degenerative neuromuscular diseases.

Keywords

Genome, Human, Amyotrophic Lateral Sclerosis, Molecular Sequence Data, Methyltransferases, QH426-470, Osteitis Deformans, Methylation, Mass Spectrometry, Myositis, Inclusion Body, HEK293 Cells, Frontotemporal Dementia, Mutation, Genetics, Humans, HSP70 Heat-Shock Proteins, Amino Acid Sequence, HSP90 Heat-Shock Proteins, Protein Processing, Post-Translational, Phylogeny, Research Article, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 1%
Top 10%
Top 1%
Green
gold