Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome
Dynamic and Differential Regulation of Stem Cell Factor FoxD3 in the Neural Crest Is Encrypted in the Genome
The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes.
- University of Oxford United Kingdom
- University of Melbourne Australia
- CALIFORNIA INSTITUTE OF TECHNOLOGY
- California Institute of Technology United States
- MRC Weatherall Institute of Molecular Medicine United Kingdom
Neurons, 570, Genome, DNA Mutational Analysis, Gene Expression Regulation, Developmental, Cell Differentiation, Forkhead Transcription Factors, QH426-470, Zebrafish Proteins, Mice, Enhancer Elements, Genetic, Cell Movement, Neural Crest, Genetics, Animals, Embryonic Stem Cells, Zebrafish, Research Article, Transcription Factors
Neurons, 570, Genome, DNA Mutational Analysis, Gene Expression Regulation, Developmental, Cell Differentiation, Forkhead Transcription Factors, QH426-470, Zebrafish Proteins, Mice, Enhancer Elements, Genetic, Cell Movement, Neural Crest, Genetics, Animals, Embryonic Stem Cells, Zebrafish, Research Article, Transcription Factors
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).131 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
