EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development
EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development
EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism.
- Hebrew University of Jerusalem Israel
- University of California, Berkeley United States
Histone Demethylases, Binding Sites, Arabidopsis Proteins, Arabidopsis, Polycomb Repressive Complex 2, Cell Differentiation, QH426-470, DNA Methylation, Genes, Plant, Plant Roots, Epigenesis, Genetic, Repressor Proteins, Gene Expression Regulation, Plant, Genetics, Mutant Proteins, Plant Shoots, Research Article, Protein Binding
Histone Demethylases, Binding Sites, Arabidopsis Proteins, Arabidopsis, Polycomb Repressive Complex 2, Cell Differentiation, QH426-470, DNA Methylation, Genes, Plant, Plant Roots, Epigenesis, Genetic, Repressor Proteins, Gene Expression Regulation, Plant, Genetics, Mutant Proteins, Plant Shoots, Research Article, Protein Binding
5 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).127 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
