Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2010 . Peer-reviewed
License: CC 0
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2010
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2010
License: CC 0
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2010
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2010
License: CC 0
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/e1000901....
Article . 2010 . Peer-reviewed
Data sources: SNSF P3 Database
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ETH Zürich Research Collection
Article . 2010
License: CC 0
Data sources: Datacite
versions View all 7 versions

Distinct Roles of Hand2 in Initiating Polarity and Posterior Shh Expression during the Onset of Mouse Limb Bud Development

Authors: Xiaozhong Bao; Marco Osterwalder; Rolf Zeller; Antonella Galli; Dimitri Robay; Jean-Denis Bénazet; Muhammad Tariq; +3 Authors

Distinct Roles of Hand2 in Initiating Polarity and Posterior Shh Expression during the Onset of Mouse Limb Bud Development

Abstract

The polarization of nascent embryonic fields and the endowment of cells with organizer properties are key to initiation of vertebrate organogenesis. One such event is antero-posterior (AP) polarization of early limb buds and activation of morphogenetic Sonic Hedgehog (SHH) signaling in the posterior mesenchyme, which in turn promotes outgrowth and specifies the pentadactylous autopod. Inactivation of the Hand2 transcriptional regulator from the onset of mouse forelimb bud development disrupts establishment of posterior identity and Shh expression, which results in a skeletal phenotype identical to Shh deficient limb buds. In wild-type limb buds, Hand2 is part of the protein complexes containing Hoxd13, another essential regulator of Shh activation in limb buds. Chromatin immunoprecipitation shows that Hand2-containing chromatin complexes are bound to the far upstream cis-regulatory region (ZRS), which is specifically required for Shh expression in the limb bud. Cell-biochemical studies indicate that Hand2 and Hoxd13 can efficiently transactivate gene expression via the ZRS, while the Gli3 repressor isoform interferes with this positive transcriptional regulation. Indeed, analysis of mouse forelimb buds lacking both Hand2 and Gli3 reveals the complete absence of antero-posterior (AP) polarity along the entire proximo-distal axis and extreme digit polydactyly without AP identities. Our study uncovers essential components of the transcriptional machinery and key interactions that set-up limb bud asymmetry upstream of establishing the SHH signaling limb bud organizer.

PLoS Genetics, 6 (4)

ISSN:1553-7390

ISSN:1553-7404

Related Organizations
Keywords

Homeodomain Proteins, Limb Buds, Gene Expression Regulation, Developmental, Mice, Transgenic, QH426-470, Embryo, Mammalian, Chromatin, Mice, Mutation, Genetics, Basic Helix-Loop-Helix Transcription Factors, Animals, Hedgehog Proteins, Research Article, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    255
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
255
Top 1%
Top 10%
Top 10%
Green
gold