Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Medical Science Moni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Science Monitor Basic Research
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Medical Science Monitor Basic Research
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
versions View all 3 versions

Anti-Alzheimer’s Disease Molecular Mechanism of Acori Tatarinowii Rhizoma Based on Network Pharmacology

Authors: Zhang, Yujia; Wu, Yangsheng; Fu, Yunbo; Lin, Luning; Lin, Yiyou; Zhang, Yehui; Ji, Liting; +1 Authors

Anti-Alzheimer’s Disease Molecular Mechanism of Acori Tatarinowii Rhizoma Based on Network Pharmacology

Abstract

BACKGROUND Acori Tatarinowii Rhizoma (ATR), a traditional Chinese herbal medicine, is used to treat Alzheimer's disease (AD), which is a worldwide degenerative brain disease. The aim of this study was to identify the potential mechanism and molecular targets of ATR in AD by using network pharmacology. MATERIAL AND METHODS The potential targets of the active ingredients of ATR were predicted by PharmMapper, and the targets of Alzheimer's disease were searched by DisGeNET. All screened genes were intersected to obtain potential targets for the active ingredients of ATR. The protein-protein interaction network of possible targets was established by STRING, GO Enrichment, and KEGG pathway enrichment analyses using the Annotation of DAVID database. Next, Cytoscape was used to build the "components-targets-pathways" networks. Additionally, a "disease-component-gene-pathways" network was constructed and verified by molecular docking methods. In addition, the active constituents ß-asarone and ß-caryophyllene were used to detect Aß₁₋₄₂-mediated SH-SY5Y cells, and mRNA expression levels of APP, Tau, and core target genes were estimated by qRT-PCR. RESULTS The results showed that the active components of ATR participate in related biological processes such as cancer, inflammation, cellular metabolism, and metabolic pathways and are closely related to the 13 predictive targets: ESR1, PPARG, AR, CASP3, JAK2, MAPK14, MAP2K1, ABL1, PTPN1, NR3C1, MET, INSR, and PRKACA. The ATR active components of ß-caryophyllene significantly reduced the mRNA expression levels of APP, TAU, ESR1, PTPN1, and JAK2. CONCLUSIONS The targets and mechanism corresponding to the active ingredients of ATR were investigated systematically, and novel ideas and directions were provided to further study the mechanism of ATR in AD.

Related Organizations
Keywords

Molecular Docking Simulation, China, Alzheimer Disease, Plant Extracts, Acorus, Protein Interaction Maps, Medicine, Chinese Traditional, Laboratory Research, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
gold