Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages

Authors: Anke Di; Tomohiro Kiya; Haixia Gong; Xiaopei Gao; Asrar B. Malik;

Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages

Abstract

ABSTRACT Acidification of macrophage phagosomes serves an important bactericidal function. We show here that the redox-sensitive transient receptor potential (TRP) cation channel TRPM2 is expressed in the phagosomal membrane and regulates macrophage bactericidal activity through the activation of phagosomal acidification. Measurement of the TRPM2 current in phagosomes identified TRPM2 as a functional redox-sensitive cation channel localized in the phagosomal membrane. Simultaneous measurements of phagosomal Ca2+ changes and phagosome acidification in macrophages undergoing phagocytosis demonstrated that TRPM2 was required to mediate the efflux of cations and for phagosomal acidification during the process of phagosome maturation. Acidification in phagosomes was significantly reduced in macrophages isolated from Trpm2−/− mice as compared to wild type, and acidification was coupled to reduced bacterial clearance in Trpm2−/− mice. Trpm2+/+ macrophages treated with the vacuolar H+-ATPase inhibitor bafilomycin showed reduced bacterial clearance, similar to that in Trpm2−/− macrophages. Direct activation of TRPM2 using adenosine diphosphate ribose (ADPR) induced both phagosomal acidification and bacterial killing. These data collectively demonstrate that TRPM2 regulates phagosomal acidification, and is essential for the bacterial killing function of macrophages.

Keywords

Male, Mice, Knockout, Staphylococcus aureus, Microbial Viability, Macrophages, TRPM Cation Channels, Phagosomes, Sepsis, Pseudomonas aeruginosa, Animals, Humans, Female, Acids, Ion Channel Gating, Lung, Oxidation-Reduction, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
hybrid