Powered by OpenAIRE graph

Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts

Authors: Isabelle, Runembert; Guillaume, Queffeulou; Pierre, Federici; François, Vrtovsnik; Emma, Colucci-Guyon; Charles, Babinet; Pascale, Briand; +3 Authors

Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts

Abstract

It has been reported that vimentin, a cytoskeleton filament that is expressed only in mesenchymal cells after birth, is re-expressed in epithelial cells in vivo under pathological conditions and in vitro in primary culture. Whether vimentin re-expression is only a marker of cellular dedifferentiation or is instrumental in the maintenance of cell structure and/or function is a matter of debate. To address this issue, we used renal proximal tubular cells in primary culture from vimentin-null mice (Vim-/-) and from wild-type littermates (Vim+/+). The absence of vimentin did not affect cell morphology, proliferation and activity of hydrolases, but dramatically decreased Na-glucose cotransport activity. This phenotype was associated with a specific reduction of SGLT1 protein in the detergent-resistant membrane microdomains (DRM). In Vim+/+cells, disruption of these microdomains by methyl-β-cyclodextrin decreased SGLT1 protein abundance in DRM, a change that was paralleled by a decrease of Na-glucose transport activity. Importantly, we showed that vimentin is located to DRM, but it disappeared after methyl-β-cyclodextrin treatment. In Vim-/- cells,supplementation of cholesterol with cholesterol-methyl-β-cyclodextrin complexes completely restored Na-glucose transport activity. Interestingly,neither cholesterol content nor cholesterol metabolism changed in Vim-/- cells. Our results are consistent with the view that re-expression of vimentin in epithelial cells could be instrumental to maintain the physical state of rafts and, thus, the function of DRM-associated proteins.

Keywords

Mice, Knockout, Cyclodextrins, Membrane Glycoproteins, Monosaccharide Transport Proteins, Hydrolases, Detergents, Sodium, Biological Transport, Cell Differentiation, Kidney Tubules, Proximal, Mice, Cholesterol, Glucose, Membrane Microdomains, Organ Culture Techniques, Sodium-Glucose Transporter 1, Animals, Vimentin, Cell Division, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%