Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Three mammalian SCAMPs (secretory carrier membrane proteins) are highly related products of distinct genes having similar subcellular distributions

Authors: D R, Singleton; T T, Wu; J D, Castle;

Three mammalian SCAMPs (secretory carrier membrane proteins) are highly related products of distinct genes having similar subcellular distributions

Abstract

ABSTRACT The primary structures of three human forms of secretory carrier membrane proteins (SCAMPs) have been deduced from full-length clones isolated from a HeLa cell cDNA library and confirmed by a combination of comparison to expressed sequence tags, microsequencing of purified protein, and in vitro transcription and translation. The structures indicated that SCAMPs are highly related products of distinct genes, and that the sequence identity of an individual SCAMP between different mammalian species is almost complete. Analysis of the distribution of SCAMPs among different mammalian tissues and cells indicates parallel expression of polypeptides and cognate mRNAs, and indicates that the three SCAMPs are usually but not always expressed together. The apparent Mrs of two SCAMPs (1 and 2) do not vary appreciably among species, while that of the third (SCAMP3) is approximately 2 kDa larger in rodent cells than in humans. Examination of the codistribution of the three forms within individual cells using double label immunofluorescence indicates extensive colocalization of SCAMP2 and SCAMP3 with endogenous SCAMP1, however, subcellular regions enriched for a particular SCAMP are readily visible. These findings suggest that the SCAMPs may largely function at the same sites during vesicular transport rather than in separate post-Golgi recycling pathways.

Related Organizations
Keywords

DNA, Complementary, Sequence Homology, Amino Acid, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Antibodies, Monoclonal, Gene Expression, Membrane Proteins, Blotting, Northern, Peptide Fragments, Liver, Antibody Specificity, Animals, Humans, Cattle, RNA, Messenger, Cloning, Molecular, Carrier Proteins, Conserved Sequence, Gene Library, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%