Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2000 . Peer-reviewed
Data sources: Crossref
Development
Article . 2001
versions View all 2 versions

Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways

Authors: G O, Gaufo; P, Flodby; M R, Capecchi;

Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways

Abstract

ABSTRACTThe diverse neuronal subtypes in the adult central nervous system arise from progenitor cells specified by the combined actions of anteroposterior (AP) and dorsoventral (DV) signaling molecules in the neural tube. Analyses of the expression and targeted disruption of the homeobox gene Hoxb1 demonstrate that it is essential for patterning progenitor cells along the entire DV axis of rhombomere 4 (r4). Hoxb1 accomplishes this function by acting very early during hindbrain neurogenesis to specify effectors of the sonic hedgehog and Mash1 signaling pathways. In the absence of Hoxb1 function, multiple neurons normally specified within r4 are instead programmed for early cell death. The findings reported here provide evidence for a genetic cascade in which an AP-specified transcription factor, Hoxb1, controls the commitment and specification of neurons derived from both alar and basal plates of r4.

Related Organizations
Keywords

Homeodomain Proteins, Mice, Knockout, Motor Neurons, Base Sequence, Green Fluorescent Proteins, Genes, Homeobox, Gene Expression Regulation, Developmental, Apoptosis, Epistasis, Genetic, Mice, Transgenic, DNA-Binding Proteins, Mice, Inbred C57BL, Luminescent Proteins, Mice, Cell Movement, Basic Helix-Loop-Helix Transcription Factors, Animals, Hedgehog Proteins, Body Patterning, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%