Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain
Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain
ABSTRACT Mutations in two genes affect the formation of the boundary between midbrain and hindbrain (MHB): no isthmus (noi) and acerebellar (ace). noi mutant embryos lack the MHB constriction, the cerebellum and optic tectum, as well as the pronephric duct. Analysis of noi mutant embryos with neuron-specific antibodies shows that the MHB region and the dorsal and ventral midbrain are absent or abnormal, but that the rostral hindbrain is unaffected with the exception of the cerebellum. Using markers that are expressed during its formation (eng, wnt1 and pax-b), we find that the MHB region is already misspecified in noi mutant embryos during late gastrulation. The tectum is initially present and later degenerates. The defect in ace mutant embryos is more restricted: MHB and cerebellum are absent, but a tectum is formed. Molecular organisation of the tectum and tegmentum is disturbed, however, since eng, wnt1 and pax-b marker gene expression is not maintained. We propose that noi and ace are required for development of the MHB region and of the adjacent mid- and hindbrain, which are thought to be patterned by the MHB region. Presence of pax-b RNA, and absence of pax-b protein, together with the observation of genetic linkage and the occurrence of a point mutation, show that noi mutations are located in the pax-b gene. pax-b is a vertebrate orthologue of the Drosophila gene paired, which is involved in a pathway of cellular interactions at the posterior compartment boundary in Drosophila. Our results confirm and extend a previous report, and show that at least one member of this conserved signalling pathway is required for formation of the boundary between midbrain and hindbrain in the zebrafish.
- Max Planck Society Germany
- Max Planck Institute for Developmental Biology Germany
Central Nervous System, Genetic Markers, Superior Colliculi, Embryo, Nonmammalian, Cell Death, Genetic Linkage, Rhombencephalon, Phenotype, Genes, Mesencephalon, Mutation, Animals, Gene Deletion, Zebrafish
Central Nervous System, Genetic Markers, Superior Colliculi, Embryo, Nonmammalian, Cell Death, Genetic Linkage, Rhombencephalon, Phenotype, Genes, Mesencephalon, Mutation, Animals, Gene Deletion, Zebrafish
22 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).310 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
