Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1995 . Peer-reviewed
Data sources: Crossref
Development
Article . 1995
versions View all 2 versions

Analysis of the genetic hierarchy guiding wing vein development in Drosophila

Authors: Mark A. Sturtevant; Ethan Bier;

Analysis of the genetic hierarchy guiding wing vein development in Drosophila

Abstract

ABSTRACT The Drosophila rhomboid (rho) and Egf- and r genes are members of a small group of genes required for the differ- and entiation of various specific embryonic and adult structures. During larval and early pupal development expression of rho in longitudinal vein primordia mediates the localized formation of wing veins. In this paper we investigate the genetic hierarchy guiding vein development, by testing for genetic interactions between rho alleles and a wide variety of wing vein mutations and by examining the pattern of rho expression in mutant developing wing primordia. We identify a small group of wing vein mutants that interact strongly with rho. Examination of rho expression in these and other key vein mutants reveals when vein development first becomes abnormal. Based on these data and on previous genetic analyses of vein formation we present a sequential model for establishment and differentiation of wing veins.

Keywords

Membrane Proteins, Genes, Insect, Veins, Phenotype, GTP-Binding Proteins, Insect Hormones, Ectoderm, Animals, Wings, Animal, Drosophila, rhoB GTP-Binding Protein, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    160
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
160
Top 10%
Top 10%
Top 1%