Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1995 . Peer-reviewed
Data sources: Crossref
Development
Article . 1996
versions View all 2 versions

The role of yan in mediating the choice between cell division and differentiation

Authors: R, Rogge; P J, Green; J, Urano; S, Horn-Saban; M, Mlodzik; B Z, Shilo; V, Hartenstein; +1 Authors

The role of yan in mediating the choice between cell division and differentiation

Abstract

ABSTRACT An allele of the yan locus was isolated as an enhancer of the Ellipse mutation of the Drosophila epidermal growth factor receptor (Egfr) gene. This yan allele is an embryonic lethal and also fails to complement the lethality of anterior open (aop) mutations. Phenotypic and complementation analysis revealed that aop is allelic to yan and genetically the lethal alleles act as null mutations for the yan gene. Analysis of the lethal alleles in the embryo and in mitotic clones showed that loss of yan function causes cells to overproliferate in the dorsal neuroectoderm of the embryo and in the developing eye disc. Our studies suggest that the role of yan is defined by the developmental context of the cells in which it functions. An important role of this gene is in allowing a cell to choose between cell division and differentiation. The relationship of the Egfr and Notch pathways to this devel- opmental role of yan is discussed.

Keywords

Embryonic Induction, Cell Differentiation, Eye, DNA-Binding Proteins, ErbB Receptors, Repressor Proteins, Drosophila melanogaster, Phenotype, Microscopy, Electron, Scanning, Animals, Drosophila Proteins, Genes, Lethal, Eye Proteins, Alleles, Cell Division

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Average
Top 10%
Top 10%