Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages
Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages
The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs.
Extremities, Real-Time Polymerase Chain Reaction, Epithelium, Microscopy, Fluorescence, Morphogenesis, Animals, Laminin, Wnt Signaling Pathway, Research Articles, In Situ Hybridization, Zebrafish
Extremities, Real-Time Polymerase Chain Reaction, Epithelium, Microscopy, Fluorescence, Morphogenesis, Animals, Laminin, Wnt Signaling Pathway, Research Articles, In Situ Hybridization, Zebrafish
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
