Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2011 . Peer-reviewed
Data sources: Crossref
Development
Article . 2011
versions View all 2 versions

BRANCHLESS TRICHOMESlinks cell shape and cell cycle control inArabidopsistrichomes

Authors: Remmy, Kasili; Cho-Chun, Huang; Jason D, Walker; L Alice, Simmons; Jing, Zhou; Chris, Faulk; Martin, Hülskamp; +1 Authors

BRANCHLESS TRICHOMESlinks cell shape and cell cycle control inArabidopsistrichomes

Abstract

Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.

Keywords

DNA Replication, Ploidies, Arabidopsis Proteins, Cell Cycle, Arabidopsis, Nuclear Proteins, Cell Cycle Proteins, Cell Differentiation, Polymerase Chain Reaction, Plant Leaves, Phenotype, Gene Expression Regulation, Plant, Mutation, Morphogenesis, Cell Shape, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
bronze