Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2006 . Peer-reviewed
Data sources: Crossref
Development
Article . 2007
versions View all 2 versions

Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes,PH4αSG1andPH4αSG2

Authors: Elliott W. Abrams; Whitney K. Mihoulides; Deborah J. Andrew;

Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes,PH4αSG1andPH4αSG2

Abstract

(Fkh) is required to block salivary gland apoptosis, internalize salivary gland precursors, prevent expression of duct genes in secretory cells and maintain expression of CrebA, which is required for elevated secretory function. Here, we characterize two new Fkh-dependent genes: PH4αSG1 and PH4αSG2. We show through in vitro DNA-binding studies and in vivo expression assays that Fkh cooperates with the salivary gland-specific bHLH protein Sage to directly regulate expression of PH4αSG2, as well as sage itself, and to indirectly regulate expression of PH4αSG1. PH4αSG1 and PH4αSG2 encode α-subunits of resident ER enzymes that hydroxylate prolines in collagen and other secreted proteins. We demonstrate that salivary gland secretions are altered in embryos missing function of PH4αSG1 and PH4αSG2; secretory content is reduced and shows increased electron density by TEM. Interestingly, the altered secretory content results in regions of tube dilation and constriction, with intermittent tube closure. The regulation studies and phenotypic characterization of PH4αSG1 and PH4αSG2 link Fkh, which initiates tube formation, to the maintenance of an open and uniformly sized secretory tube.

Related Organizations
Keywords

Microscopy, Confocal, Procollagen-Proline Dioxygenase, Gene Expression Regulation, Developmental, Nuclear Proteins, Electrophoretic Mobility Shift Assay, Forkhead Transcription Factors, Cyclic AMP Response Element-Binding Protein A, Immunohistochemistry, Salivary Glands, Drosophila melanogaster, Microscopy, Electron, Transmission, Basic Helix-Loop-Helix Transcription Factors, Morphogenesis, Animals, Drosophila Proteins, Salivary Proteins and Peptides, In Situ Hybridization, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%
bronze