Powered by OpenAIRE graph

Joint regulation of the MAP1B promoter by HNF3β/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors

Authors: Isabelle, Foucher; María Luz, Montesinos; Michel, Volovitch; Alain, Prochiantz; Alain, Trembleau;

Joint regulation of the MAP1B promoter by HNF3β/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors

Abstract

The MAP1B (Mtap1b) promoter presents two evolutionary conserved overlapping homeoproteins and Hepatocyte nuclear factor 3β(HNF3β/Foxa2) cognate binding sites (defining putative homeoprotein/Fox sites, HF1 and HF2). Accordingly, the promoter domain containing HF1 and HF2 is recognized by cerebellum nuclear extracts containing Engrailed and Foxa2 and has regulatory functions in primary cultures of embryonic mesmetencephalic nerve cells. Transfection experiments further demonstrate that Engrailed and Foxa2 interact physiologically in a dose-dependent manner: Foxa2 antagonizes the Engrailed-driven regulation of the MAP1B promoter, and vice versa. This led us to investigate if Engrailed and Foxa2 interact directly. Direct interaction was confirmed by pull-down experiments, and the regions participating in this interaction were identified. In Foxa2 the interacting domain is the Forkhead box DNA-binding domain. In Engrailed, two independent interacting domains exist: the homeodomain and a region that includes the Pbx-binding domain. Finally, Foxa2 not only binds Engrailed but also Lim1, Gsc and Hoxa5 homeoproteins and in the four cases Foxa2 binds at least the homeodomain. Based on the involvement of conserved domains in both classes of proteins, it is proposed that the interaction between Forkhead box transcription factors and homeoproteins is a general phenomenon.

Keywords

Homeodomain Proteins, Neurons, Binding Sites, Base Sequence, Molecular Sequence Data, Brain, Nuclear Proteins, Nerve Tissue Proteins, DNA-Binding Proteins, Mice, Hepatocyte Nuclear Factor 3-beta, Animals, Promoter Regions, Genetic, Microtubule-Associated Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%