Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2005
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2005
Data sources: HAL AMU
The Journal of Clinical Endocrinology & Metabolism
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions

Congenital Isolated Adrenocorticotropin Deficiency: An Underestimated Cause of Neonatal Death, Explained byTPITGene Mutations

Authors: Vallette-Kasic, S.; Brue, Thierry; Pulichino, A.M.; Gueydan, M.; Barlier, Anne; David, M.; Nicolino, M.; +29 Authors

Congenital Isolated Adrenocorticotropin Deficiency: An Underestimated Cause of Neonatal Death, Explained byTPITGene Mutations

Abstract

Tpit is a T box transcription factor important for terminal differentiation of pituitary proopiomelanocortin-expressing cells. We demonstrated that human and mouse mutations of the TPIT gene cause a neonatal-onset form of congenital isolated ACTH deficiency (IAD). In the absence of glucocorticoid replacement, IAD can lead to neonatal death by acute adrenal insufficiency. This clinical entity was not previously well characterized because of the small number of published cases. Since identification of the first TPIT mutations, we have enlarged our series of neonatal IAD patients to 27 patients from 21 unrelated families. We found TPIT mutations in 17 of 27 patients. We identified 10 different TPIT mutations, with one mutation found in five unrelated families. All patients appeared to be homozygous or compound heterozygous for TPIT mutations, and their unaffected parents are heterozygous carriers, confirming a recessive mode of transmission. We compared the clinical and biological phenotype of the 17 IAD patients carrying a TPIT mutation with the 10 IAD patients with normal TPIT-coding sequences. This series of neonatal IAD patients revealed a highly homogeneous clinical presentation, suggesting that this disease may be an underestimated cause of neonatal death. Identification of TPIT gene mutations as the principal molecular cause of neonatal IAD permits prenatal diagnosis for families at risk for the purpose of early glucocorticoid replacement therapy.

Keywords

Adult, Homeodomain Proteins, Male, Adolescent, Infant, Newborn, Genes, Recessive, Infant, Newborn, Diseases, Pedigree, Adrenocorticotropic Hormone, Cause of Death, Mutation, Humans, Female, IGMD 8: Mitochondrial medicine, Age of Onset, IGMD 5: Health aging / healthy living, Child, T-Box Domain Proteins, UMCN 5.2: Endocrinology and reproduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 10%
Green
bronze