Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2012 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2012
versions View all 2 versions

Neonatal Exposure to Estradiol/Bisphenol A Alters Promoter Methylation and Expression of Nsbp1 and Hpcal1 Genes and Transcriptional Programs of Dnmt3a/b and Mbd2/4 in the RatProstate Gland Throughout Life

Authors: Wan-yee, Tang; Lisa M, Morey; Yuk Yin, Cheung; Lynn, Birch; Gail S, Prins; Shuk-mei, Ho;

Neonatal Exposure to Estradiol/Bisphenol A Alters Promoter Methylation and Expression of Nsbp1 and Hpcal1 Genes and Transcriptional Programs of Dnmt3a/b and Mbd2/4 in the RatProstate Gland Throughout Life

Abstract

Evidence supporting an early origin of prostate cancer is growing. We demonstrated previously that brief exposure of neonatal rats to estradiol or bisphenol A elevated their risk of developing precancerous lesions in the prostate upon androgen-supported treatment with estradiol as adults. Epigenetic reprogramming may be a mechanism underlying this inductive event in early life, because we observed overexpression of phosphodiesterase 4D variant 4 (Pde4d4) through induction of hypomethylation of its promoter. This epigenetic mark was invisible in early life (postnatal d 10), becoming apparent only after sexual maturation. Here, we asked whether other estrogen-reprogrammable epigenetic marks have similar or different patterns in gene methylation changes throughout life. We found that hypomethylation of the promoter of nucleosome binding protein-1 (Nsbp1), unlike Pde4d4, is an early and permanent epigenetic mark of neonatal exposure to estradiol/bisphenol A that persists throughout life, unaffected by events during adulthood. In contrast, hippocalcin-like 1 (Hpcal1) is a highly plastic epigenetic mark whose hypermethylation depends on both type of early-life exposure and adult-life events. Four of the eight genes involved in DNA methylation/demethylation showed early and persistent overexpression that was not a function of DNA methylation at their promoters, including genes encoding de novo DNA methyltransferases (Dnmt3a/b) and methyl-CpG binding domain proteins (Mbd2/4) that have demethylating activities. Their lifelong aberrant expression implicates them in early-life reprogramming and prostate carcinogenesis during adulthood. We speculate that the distinctly different fate of early-life epigenetic marks during adulthood reflects the complex nature of lifelong editing of early-life epigenetic reprogramming.

Related Organizations
Keywords

Male, Base Sequence, Estradiol, Calcium-Binding Proteins, Prostate, Gene Expression, Nerve Tissue Proteins, DNA Methylation, Decitabine, DNA Methyltransferase 3A, DNA-Binding Proteins, Animals, Newborn, Phenols, Azacitidine, Animals, HMGN Proteins, DNA (Cytosine-5-)-Methyltransferases, Benzhydryl Compounds, Promoter Regions, Genetic, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research