Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2018
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
versions View all 7 versions

IntEREst: intron-exon retention estimator

Authors: Greco Dario; Oghabian Ali; Greco Dario; Frilander Mikko J.; Oghabian Ali; Greco Dario; Frilander Mikko J.;
Abstract

In-depth study of the intron retention levels of transcripts provide insights on the mechanisms regulating pre-mRNA splicing efficiency. Additionally, detailed analysis of retained introns can link these introns to post-transcriptional regulation or identify aberrant splicing events in human diseases.We present IntEREst, Intron-Exon Retention Estimator, an R package that supports rigorous analysis of non-annotated intron retention events (in addition to the ones annotated by RefSeq or similar databases), and support intra-sample in addition to inter-sample comparisons. It accepts binary sequence alignment/map (.bam) files as input and determines genome-wide estimates of intron retention or exon-exon junction levels. Moreover, it includes functions for comparing subsets of user-defined introns (e.g. U12-type vs U2-type) and its plotting functions allow visualization of the distribution of the retention levels of the introns. Statistical methods are adapted from the DESeq2, edgeR and DEXSeq R packages to extract the significantly more or less retained introns. Analyses can be performed either sequentially (on single core) or in parallel (on multiple cores). We used IntEREst to investigate the U12- and U2-type intron retention in human and plant RNAseq dataset with defects in the U12-dependent spliceosome due to mutations in the ZRSR2 component of this spliceosome. Additionally, we compared the retained introns discovered by IntEREst with that of other methods and studies.IntEREst is an R package for Intron retention and exon-exon junction levels analysis of RNA-seq data. Both the human and plant analyses show that the U12-type introns are retained at higher level compared to the U2-type introns already in the control samples, but the retention is exacerbated in patient or plant samples carrying a mutated ZRSR2 gene. Intron retention events caused by ZRSR2 mutation that we discovered using IntEREst (DESeq2 based function) show considerable overlap with the retained introns discovered by other methods (e.g. IRFinder and edgeR based function of IntEREst). Our results indicate that increase in both the number of biological replicates and the depth of sequencing library promote the discovery of retained introns, but the effect of library size gradually decreases with more than 35 million reads mapped to the introns.

Keywords

QH301-705.5, Computer applications to medicine. Medical informatics, Bioconductor, R858-859.7, Down-Regulation, Expression analysis, Biokemia, solu- ja molekyylibiologia - Biochemistry, cell and molecular biology, U2-type introns, DEVELOPMENTAL DISORDER, Lääketieteen bioteknologia - Medical biotechnology, U12-TYPE INTRONS, Humans, U4ATAC SNRNA, Biology (General), Base Pairing, GENE-EXPRESSION, Intron retention, MINOR SPLICEOSOME, Genome, Human, Biokemia, Computational Biology, Exons, COMPONENT, Introns, Up-Regulation, cell and molecular biology, Genetics, developmental biology, physiology, solu- ja molekyylibiologia - Biochemistry, DIFFERENTIAL EXPRESSION ANALYSIS, Myelodysplastic Syndromes, Sample Size, RNA, RNA-seq, U12-type introns, Software, Alternative splicing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Average
Top 10%
Green
gold