Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Pharmacology and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pharmacology and Toxicology
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pharmacology and Toxicology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Pharmacology and Toxicology
Article
License: Springer TDM
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Conditional disruption of interactions between Gαi2 and regulator of G protein signaling (RGS) proteins protects the heart from ischemic injury

Authors: Parra, Sergio; Huang, Xinyan; Charbeneau, Raelene A; Wade, Susan M; Kaur, Kuljeet; Rorabaugh, Boyd R; Neubig, Richard R;

Conditional disruption of interactions between Gαi2 and regulator of G protein signaling (RGS) proteins protects the heart from ischemic injury

Abstract

Regulator of G protein signaling (RGS) proteins suppress G protein coupled receptor signaling by catalyzing the hydrolysis of Gα-bound guanine nucleotide triphosphate. Transgenic mice in which RGS-mediated regulation of Gαi2 is lost (RGS insensitive Gαi2G184S) exhibit beneficial (protection against ischemic injury) and detrimental (enhanced fibrosis) cardiac phenotypes. This mouse model has revealed the physiological significance of RGS/Gαi2 interactions. Previous studies of the Gαi2G184S mutation used mice that express this mutant protein throughout their lives. Thus, it is unclear whether these phenotypes result from chronic or acute Gαi2G184S expression. We addressed this issue by developing mice that conditionally express Gαi2G184S.Mice that conditionally express RGS insensitive Gαi2G184S were generated using a floxed minigene strategy. Conditional expression of Gαi2G184S was characterized by reverse transcription polymerase chain reaction and by enhancement of agonist-induced inhibition of cAMP production in isolated cardiac fibroblasts. The impact of conditional RGS insensitive Gαi2G184S expression on ischemic injury was assessed by measuring contractile recovery and infarct sizes in isolated hearts subjected to 30 min ischemia and 2 hours reperfusion.We demonstrate tamoxifen-dependent expression of Gαi2G184S, enhanced inhibition of cAMP production, and cardioprotection from ischemic injury in hearts conditionally expressing Gαi2G184S. Thus the cardioprotective phenotype previously reported in mice expressing Gαi2G184S does not require embryonic or chronic Gαi2G184S expression. Rather, cardioprotection occurs following acute (days rather than months) expression of Gαi2G184S.These data suggest that RGS proteins might provide new therapeutic targets to protect the heart from ischemic injury. We anticipate that this model will be valuable for understanding the time course (chronic versus acute) and mechanisms of other phenotypic changes that occur following disruption of interactions between Gαi2 and RGS proteins.

Keywords

Myocardium, Myocardial Ischemia, Mice, Transgenic, Fibroblasts, Mice, Tamoxifen, Mutation, Cyclic AMP, Animals, GTP-Binding Protein alpha Subunit, Gi2, Lysophospholipids, Cells, Cultured, RGS Proteins, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Green
gold