Powered by OpenAIRE graph

Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis

Authors: Street, Shayna E. A.; Cretney, Erika; Smyth, Mark J.;

Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis

Abstract

AbstractPerforin (pfp) and interferon-γ (IFN-γ) together in C57BL/6 (B6) and BALB/c mouse strains provided optimal protection in 3 separate tumor models controlled by innate immunity. Using experimental (B6, RM-1 prostate carcinoma) and spontaneous (BALB/c, DA3 mammary carcinoma) models of metastatic cancer, mice deficient in both pfp and IFN-γ were significantly less proficient than pfp- or IFN-γ–deficient mice in preventing metastasis of tumor cells to the lung. Pfp and IFN-γ–deficient mice were as susceptible as mice depleted of natural killer (NK) cells in both tumor metastasis models, and IFN-γ appeared to play an early role in protection from metastasis. Previous experiments in a model of fibrosarcoma induced by the chemical carcinogen methylcholanthrene indicated an important role for NK1.1+ T cells. Herein, both pfp and IFN-γ played critical and independent roles in providing the host with protection equivalent to that mediated by NK1.1+ T cells. Further analysis demonstrated that IFN-γ, but not pfp, controlled the growth rate of sarcomas arising in these mice. Thus, this is the first study to demonstrate that host IFN-γ and direct cytotoxicity mediated by cytotoxic lymphocytes expressing pfp independently contribute antitumor effector functions that together control the initiation, growth, and spread of tumors in mice.

Keywords

Pore Forming Cytotoxic Proteins, Deficient mice, 570, Fibrosarcoma, Natural-killer-cells, Cutting edge, Antineoplastic Agents, Mice, Inbred Strains, Mice, SCID, Interferon-gamma, Leukocyte Count, Mice, In-vivo, Animals, Neoplasm Metastasis, Mice, Knockout, Membrane Glycoproteins, Perforin, T-cells, Hematology, Neoplasms, Experimental, Cytotoxicity Tests, Immunologic, Killer Cells, Natural, Disease Models, Animal, Cell Transformation, Neoplastic, Cell Division, Methylcholanthrene

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    462
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
462
Top 1%
Top 1%
Top 1%