Powered by OpenAIRE graph
Bloodarrow_drop_down
Blood
Article . 2007 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2007
versions View all 2 versions

High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism

Authors: Shunichi Kato; Takehiko Sasazuki; Hidetoshi Inoko; Takeo Juji; Hiroh Saji; Keitaro Matsuo; Koichi Kashiwase; +3 Authors

High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism

Abstract

In allogenic hematopoietic stem-cell transplantation, an effect of HLA locus mismatch in allele level on clinical outcome has been clarified. However, the effect of each HLA allele mismatch combination is little known, and its molecular mechanism to induce acute graft-versus-host disease (aGVHD) remains to be elucidated. A total of 5210 donor-patient pairs who underwent transplantation through Japan Marrow Donor Program were analyzed. All HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 alleles were retrospectively typed in all pairs. The impacts of the HLA allele mismatch combinations and amino acid substitution positions in 6 HLA loci on severe aGVHD were analyzed. A total of 15 significant high-risk HLA allele mismatch combinations and 1 HLA-DRB1-DQB1 linked mismatch combinations (high-risk mismatch) for severe aGVHD were identified, and the number of high-risk mismatches was highly associated with the occurrence of severe aGVHD regardless of the presence of mismatch combinations other than high-risk mismatch. Furthermore, 6 specific amino acid substitution positions in HLA class I were identified as those responsible for severe aGVHD. These findings provide evidence to elucidate the mechanism of aGVHD on the basis of HLA molecule. Furthermore, the identification of high-risk mismatch, that is, nonpermissive mismatch, would be beneficial for the selection of a suitable donor.

Keywords

Adult, Male, Models, Molecular, Graft vs Host Disease, Protein Structure, Tertiary, Survival Rate, HLA Antigens, Risk Factors, Histocompatibility, Acute Disease, Humans, Female, Amino Acids, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    236
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
236
Top 1%
Top 1%
Top 1%