Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Biology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Biology and Medicine
Article . 2004 . Peer-reviewed
License: SAGE TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

Nutrition- and Virus-Induced Stress Represses the Expression of Manganese Superoxide Dismutase in Vitro

Authors: M. Aymard; Jeremiah G. Tilles; Martina M. Berger; Martina M. Berger; Xi Yu Jia; Vincent Legay; Bruno Lina;

Nutrition- and Virus-Induced Stress Represses the Expression of Manganese Superoxide Dismutase in Vitro

Abstract

The relationship between oxidative stress and neuronal cell death has been suggested for many years. To understand the influence of oxidative stress on neuronal cell death, we investigated the influence of oxidative stress on DEV cells, a human glial cell line. Using enterovirus infection and/or malnutrition to induce oxidative stress, our results demonstrate that those stressors severely influence the antioxidant defense system in DEV cells. Although the expression of mitochondrial manganese superoxide dismutase (MnSOD) in DEV cells was significantly increased in acute infection with viral and nutritional stress, in persistent infection and nutritional stress, the expression of the MnSOD was drastically downregulated. We believe that this downregulation of MnSOD expression in the chronic stress model is due to repression of antioxidant defense. The downregulation of the MnSOD expression may lead to an increase of free-radical production and thus explain why the cells in the chronic stress model were more vulnerable to other oxidative stress influences. The vulnerability of DEV cells to additional stress factors resulted in progressive cell death, which may be analogous to the cell death in neurodegenerative diseases.

Keywords

Astrocytes/cytology, Mitochondria/*enzymology, Cell Line, Echovirus 6, Human, Humans, Nutritional Physiological Phenomena, Nutrition Physiology/physiology, Enterovirus, [SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology, Superoxide Dismutase, Neuroglia/*cytology/virology, Cell Differentiation, Mitochondria, Kinetics, Oxidative Stress, Enterovirus/*pathogenicity, Astrocytes, Oxidative Stress/*physiology, Superoxide Dismutase/*genetics, Neuroglia, Human/*pathogenicity, Cell Division, Echovirus 6

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
gold