Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation
Article
Data sources: UnpayWall
Circulation
Article . 2010 . Peer-reviewed
Data sources: Crossref
Circulation
Article . 2010
versions View all 2 versions

Tumor Necrosis Factor Receptor–Associated Factor 1 (TRAF1) Deficiency Attenuates Atherosclerosis in Mice by Impairing Monocyte Recruitment to the Vessel Wall

Authors: Missiou, Anna; Köstlin, Natascha; Varo, Nerea; Rudolf, Philipp Michael; Aichele, Peter; Ernst, Sandra; Münkel, Christian; +11 Authors

Tumor Necrosis Factor Receptor–Associated Factor 1 (TRAF1) Deficiency Attenuates Atherosclerosis in Mice by Impairing Monocyte Recruitment to the Vessel Wall

Abstract

Background— Members of the tumor necrosis factor superfamily, such as tumor necrosis factor-α, potently promote atherogenesis in mice and humans. Tumor necrosis factor receptor–associated factors (TRAFs) are cytoplasmic adaptor proteins for this group of cytokines. Methods and Results— This study tested the hypothesis that TRAF1 modulates atherogenesis in vivo. TRAF1 −/− /LDLR −/− mice that consumed a high-cholesterol diet for 18 weeks developed significantly smaller atherosclerotic lesions than LDLR −/− (LDL receptor–deficient) control animals. As the most prominent change in histological composition, plaques of TRAF1-deficient animals contained significantly fewer macrophages. Bone marrow transplantations revealed that TRAF1 deficiency in both hematopoietic and vascular resident cells contributed to the reduction in atherogenesis observed. Mechanistic studies showed that deficiency of TRAF1 in endothelial cells and monocytes reduced adhesion of inflammatory cells to the endothelium in static and dynamic assays. Impaired adhesion coincided with reduced cell spreading, actin polymerization, and CD29 expression in macrophages, as well as decreased expression of the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in endothelial cells. Small interfering RNA studies in human cells verified these findings. Furthermore, TRAF1 messenger RNA levels were significantly elevated in the blood of patients with acute coronary syndrome. Conclusions— TRAF1 deficiency attenuates atherogenesis in mice, most likely owing to impaired monocyte recruitment to the vessel wall. These data identify TRAF1 as a potential treatment target for atherosclerosis.

Country
Germany
Keywords

Male, Interleukin-6, Macrophages, Endothelial Cells, Apoptosis, Bone Marrow Cells, Cell Differentiation, Atherosclerosis, Actins, Mice, Mutant Strains, Mice, Cell Movement, Cell Adhesion, Animals, Humans, Female, Acute Coronary Syndrome, Chemokines, Cells, Cultured, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
bronze