Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Thymosin Beta 4 Is Dispensable for Murine Cardiac Development and Function

Authors: Banerjee, Indroneal; Zhang, Jianlin; Moore-Morris, Thomas; Lange, Stephan; Shen, Tao; Dalton, Nancy D.; Gu, Yusu; +3 Authors

Thymosin Beta 4 Is Dispensable for Murine Cardiac Development and Function

Abstract

Rationale: Thymosin beta 4 (Tβ4) is a 43–amino acid factor encoded by an X-linked gene. Recent studies have suggested that Tβ4 is a key factor in cardiac development, growth, disease, epicardial integrity, and blood vessel formation. Cardiac-specific short hairpin (sh)RNA knockdown of tβ4 has been reported to result in embryonic lethality at E14.5–16.5, with severe cardiac and angiogenic defects. However, this shRNA tβ4 -knockdown model did not completely abrogate Tβ4 expression. To completely ablate Tβ4 and to rule out the possibility of off-target effects associated with shRNA gene silencing, further studies of global or cardiac-specific knockouts are critical. Objective: We examined the role of Tβ4 in developing and adult heart through global and cardiac specific t β4-knockout mouse models. Methods and Results: Global t β 4 -knockout mice were born at mendelian ratios and exhibited normal heart and blood vessel formation. Furthermore, in adult global t β 4 -knockout mice, cardiac function, capillary density, expression of key cardiac fetal and angiogenic genes, epicardial marker expression, and extracellular matrix deposition were indistinguishable from that of controls. Tissue-specific t β 4 -deficient mice, generated by crossing t β 4 -floxed mice to Nkx2.5-Cre and α MHC-Cre , were also found to have no phenotype. Conclusions: We conclude that Tβ4 is dispensable for embryonic viability, heart development, coronary vessel development, and adult myocardial function.

Related Organizations
Keywords

Male, Mice, Knockout, thymosin beta 4, cardiac development, Embryonic Development, Gene Expression Regulation, Developmental, Neovascularization, Physiologic, Heart, Coronary Vessels, Thymosin, Mice, Models, Animal, Animals, epicardium, Female, cardiac function, RNA, Small Interfering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%
Green
bronze