Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arteriosclerosis Thr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arteriosclerosis Thrombosis and Vascular Biology
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Angiotensin II Type 1 Receptor–Mediated Inflammation Is Required for Choroidal Neovascularization

Authors: Yoshiaki Kubota; Makoto Inoue; Susumu Ishida; Kousuke Noda; Takashi Urano; Norihiro Nagai; Yuichi Oike; +4 Authors

Angiotensin II Type 1 Receptor–Mediated Inflammation Is Required for Choroidal Neovascularization

Abstract

Background—Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration, the most common cause of blindness in the developed countries. The aim of the current study was to determine the involvement of the renin-angiotensin system (RAS) with the development of CNV, using human surgical samples and the murine model of laser-induced CNV.Methods and Results—In the human and murine CNV tissues, the vascular endothelium expressed angiotensin II type 1 receptor (AT1-R), AT2-R, and angiotensin II. The CNV volume was significantly suppressed by treatment with an AT1-R blocker telmisartan, but not with an AT2-R blocker. AT1-R signaling blockade with telmisartan inhibited various inflammatory mechanisms including macrophage infiltration and upregulation of VEGF, intercellular adhesion molecule-1 (ICAM-1), MCP-1, and IL-6 in the retinal pigment epithelium-choroid complex. A PPAR-γ antagonist partially but significantly reversed the suppressive effect of telmisartan on in vivo induction of CNV and in vitro upregulation of ICAM-1 and MCP-1 in endothelial cells and IL-6 in macrophages, showing the dual contribution of PPAR-γ-agonistic and AT1-R-antagonistic actions in the telmisartan treatment.Conclusions—AT1-R–mediated inflammation plays a pivotal role in the development of CNV, indicating the possibility of AT1-R blockade as a novel therapeutic strategy to inhibit CNV.

Related Organizations
Keywords

Inflammation, Angiotensin II, Macrophages, Endothelial Cells, Benzoates, Receptor, Angiotensin, Type 2, Choroidal Neovascularization, Receptor, Angiotensin, Type 1, Cell Line, Mice, Inbred C57BL, PPAR gamma, Mice, Cell Movement, Animals, Humans, Angiogenesis Inducing Agents, Benzimidazoles, Telmisartan, Inflammation Mediators, Angiotensin II Type 1 Receptor Blockers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 10%
bronze