Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Physiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article . 2015 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cellular Physiology and Biochemistry
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Inhibition of Recombining Binding Protein Suppressor of Hairless (RBPJ) Impairs the Growth of Prostate Cancer

Authors: Li Xue; Hecheng Li; Qi Chen; Zhenlong Wang; Peng Zhang; Haiwen Chen; Ziming Wang; +1 Authors

Inhibition of Recombining Binding Protein Suppressor of Hairless (RBPJ) Impairs the Growth of Prostate Cancer

Abstract

Background/Aims: Notch signaling pathway regulates cancer cell growth. RBPJ is a key transcription factor downstream of Notch receptor activation, whereas the role of RBPJ in carcinogenesis of prostate cancer is ill-defined. Methods: Here, we evaluated the effects of RBPJ inhibition on the growth of prostate cancer cells. We knocked down RBPJ in prostate cancer cells by a short hairpin interfering RNA (shRNA). We measured cell growth by an MTT assay. We analyzed the levels of cell-cycle-associated proteins by Western blot. Results: We found that shRNA for RBPJ efficiently inhibited RBPJ expression in prostate cancer cells, resulting in a significant decrease in the cell growth. Further, RBPJ-mediated cell-growth inhibition appeared to be resulting from alteration of cell-cycle inhibitors p21 and p27, cell-cycle activators CDK2, CDK4 and CyclinD1, and apoptosis-suppressor Bcl-2. Conclusion: Our data suggest that shRNA intervention of RBPJ expression could be a promising therapeutic approach for treating human prostate cancer.

Related Organizations
Keywords

Male, Prostate cancer, Physiology, Prostatic Neoplasms, QD415-436, RBPJ, Biochemistry, Notch signaling pathway, Cancer growth, HEK293 Cells, Cell Line, Tumor, Immunoglobulin J Recombination Signal Sequence-Binding Protein, QP1-981, Humans, RNA, Small Interfering, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold
Related to Research communities
Cancer Research