Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS - Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Discovery
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cancer Discovery
Article . 2015 . Peer-reviewed
Data sources: Crossref
Cancer Discovery
Article . 2016
versions View all 5 versions

A Genetic Platform to Model Sarcomagenesis from Primary Adult Mesenchymal Stem Cells

Authors: Takahiro Maeda; Jlenia Guarnerio; Carlos Cordon-Cardo; Min Sup Song; Paolo Sportoletti; Mireia Castillo-Martin; Andrea Lunardi; +8 Authors

A Genetic Platform to Model Sarcomagenesis from Primary Adult Mesenchymal Stem Cells

Abstract

Abstract The regulatory factors governing adult mesenchymal stem cell (MSC) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal forms of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here, we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSC transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF–DLK1–SOX9 pathway in the pathogenesis of undifferentiated sarcoma, with important therapeutic implications. Significance: The paucity of therapeutic options for the treatment of sarcoma calls for a rapid and effective preclinical assessment of new therapeutic modalities. We have here developed a new platform to deconstruct the molecular genetics underlying the pathogenesis of sarcoma and to evaluatein vivo the efficacy of novel targeted therapies. Cancer Discov; 5(4); 396–409. ©2015 AACR. This article is highlighted in the In This Issue feature, p. 333

Country
Italy
Keywords

Adult, Cell Culture Techniques, Mice, Transgenic, Models, Biological, Cell Line, Immunophenotyping, Mice, Animals, Humans, Cell Proliferation, Mice, Knockout, Calcium-Binding Proteins, Cell Differentiation, Mesenchymal Stem Cells, Sarcoma, Adult; Animals; Cell Culture Techniques; Cell Differentiation; Cell Line; Cell Proliferation; Cell Transformation, Neoplastic; DNA-Binding Proteins; Gene Expression Regulation, Neoplastic; Humans; Immunophenotyping; Intercellular Signaling Peptides and Proteins; Mesenchymal Stromal Cells; Mice; Mice, Knockout; Mice, Transgenic; Phenotype; Sarcoma; Transcription Factors; Transcription, Genetic; Tumor Suppressor Proteins; Models, Biological; Oncology, DNA-Binding Proteins, Gene Expression Regulation, Neoplastic, Cell Transformation, Neoplastic, Phenotype, Intercellular Signaling Peptides and Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Green
bronze