Transcriptome correlation analysis identifies two unique craniosynostosis subtypes associated with IRS1 activation
Transcriptome correlation analysis identifies two unique craniosynostosis subtypes associated with IRS1 activation
The discovery of causal mechanisms associated with nonsyndromic craniosynostosis has proven to be a difficult task due to the complex nature of the disease. In this study, differential transcriptome correlation analysis was used to identify two molecularly distinct subtypes of nonsyndromic craniosynostosis, termed subtype A and subtype B. In addition to unique correlation structure, subtype A was also associated with high IGF pathway expression, whereas subtype B was associated with high integrin expression. To identify a pathologic link between altered gene correlation/expression and the disease state, phosphorylation assays were performed on primary osteoblast cell lines derived from cases within subtype A or subtype B, as well as on primary osteoblast cell lines with novel IGF1R variants previously reported by our lab (Cunningham ML, Horst JA, Rieder MJ, Hing AV, Stanaway IB, Park SS, Samudrala R, Speltz ML. Am J Med Genet A 155A: 91–97, 2011). Elevated IRS1 (pan-tyr) and GSK3β (ser-9) phosphorylation were observed in two novel IGF1R variants with receptor L domain mutations. In subtype A, a hypomineralization phenotype coupled with decreased phosphorylation of IRS1 (ser-312), p38 (thr-180/tyr-182), and p70S6K (thr-412) was observed. In subtype B, decreased phosphorylation of IRS1 (ser-312) as well as increased phosphorylation of Akt (ser-473), GSK3β (ser-9), IGF1R (tyr-1135/tyr-1136), JNK (thr-183/tyr-187), p70S6K (thr-412), and pRPS6 (ser-235/ser-236) was observed, thus implicating the activation of IRS1-mediated Akt signaling in potentiating craniosynostosis in this subtype. Taken together, these results suggest that despite the stimulation of different pathways, activating phosphorylation patterns for IRS1 were consistent in cell lines from both subtypes and the IGF1R variants, thus implicating a key role for IRS1 in the pathogenesis of nonsyndromic craniosynostosis.
- University of Washington United States
- Seattle Children's Research Institute United States
- University of Mary United States
- Sage Bionetworks United States
Ribosomal Protein S6, Glycogen Synthase Kinase 3 beta, Osteoblasts, JNK Mitogen-Activated Protein Kinases, Infant, Ribosomal Protein S6 Kinases, 70-kDa, Cell Line, Receptor, IGF Type 1, Craniosynostoses, Glycogen Synthase Kinase 3, Child, Preschool, Mutation, Insulin Receptor Substrate Proteins, Cluster Analysis, Humans, Phosphorylation, Child, Proto-Oncogene Proteins c-akt, Cells, Cultured, Oligonucleotide Array Sequence Analysis
Ribosomal Protein S6, Glycogen Synthase Kinase 3 beta, Osteoblasts, JNK Mitogen-Activated Protein Kinases, Infant, Ribosomal Protein S6 Kinases, 70-kDa, Cell Line, Receptor, IGF Type 1, Craniosynostoses, Glycogen Synthase Kinase 3, Child, Preschool, Mutation, Insulin Receptor Substrate Proteins, Cluster Analysis, Humans, Phosphorylation, Child, Proto-Oncogene Proteins c-akt, Cells, Cultured, Oligonucleotide Array Sequence Analysis
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
