Powered by OpenAIRE graph

Epinephrine-induced hyperpolarization of islet cells without KATPchannels

Authors: Susanne Ullrich; Susanne Ullrich; Michael Buchenau; Joseph Bryan; Andrea Sieg; Jiping Su; Mitsuhiro Nakazaki; +2 Authors

Epinephrine-induced hyperpolarization of islet cells without KATPchannels

Abstract

This study examines the effect of epinephrine, a known physiological inhibitor of insulin secretion, on the membrane potential of pancreatic islet cells from sulfonylurea receptor-1 (ABCC8)-null mice (Sur1KO), which lack functional ATP-sensitive K+(KATP) channels. These channels have been argued to be activated by catecholamines, but epinephrine effectively inhibits insulin secretion in both Sur1KO and wild-type islets and in mice. Isolated Sur1KO β-cells are depolarized in both low (2.8 mmol/l) and high (16.7 mmol/l) glucose and exhibit Ca2+-dependent action potentials. Epinephrine hyperpolarizes Sur1KO β-cells, inhibiting their spontaneous action potentials. This effect, observed in standard whole cell patches, is abolished by pertussis toxin and blocked by BaCl2. The epinephrine effect is mimicked by clonidine, a selective α2-adrenoceptor agonist and inhibited by α-yohimbine, an α2-antagonist. A selection of K+channel inhibitors, tetraethylammonium, apamin, dendrotoxin, iberiotoxin, E-4130, chromanol 293B, and tertiapin did not block the epinephrine-induced hyperpolarization. Analysis of whole cell currents revealed an inward conductance of 0.11 ± 0.04 nS/pF ( n = 7) and a TEA-sensitive outward conductance of 0.55 ± 0.08 nS/pF ( n = 7) at -60 and 0 mV, respectively. Guanosine 5′- O-(3-thiotriphosphate) (100 μM) in the patch pipette did not significantly alter these currents or activate novel inward-rectifying K+currents. We conclude that epinephrine can hyperpolarize β-cells in the absence of KATPchannels via activation of low-conductance BaCl2-sensitive K+channels that are regulated by pertussis toxin-sensitive G proteins.

Related Organizations
Keywords

Male, Mice, Knockout, Potassium Channels, Epinephrine, Nifedipine, Receptors, Drug, Sulfonylurea Receptors, Membrane Potentials, Islets of Langerhans, Mice, Adenosine Triphosphate, Animals, ATP-Binding Cassette Transporters, Multidrug Resistance-Associated Proteins, Potassium Channels, Inwardly Rectifying, Ion Channel Gating, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%