Powered by OpenAIRE graph

Drosophila: The Genetics of Innate Immune Recognition and Response

Authors: Kathryn V. Anderson; Catherine A. Brennan;

Drosophila: The Genetics of Innate Immune Recognition and Response

Abstract

▪ Abstract Because of the evolutionary conservation of innate mechanisms of host defense, Drosophila has emerged as an ideal animal in which to study the genetic control of immune recognition and responses. The discovery that the Toll pathway is required for defense against fungal infection in Drosophila was pivotal in studies of both mammalian and Drosophila immunity. Subsequent genetic screens in Drosophila to isolate additional mutants unable to induce humoral responses to infection have identified and ordered the function of components of two signaling cascades, the Toll and Imd pathways, that activate responses to infection. Drosophila blood cells also contribute to host defense through phagocytosis and signaling, and may carry out a form of self-nonself recognition that is independent of microbial pattern recognition. Recent work suggests that Drosophila will be a useful model for dissecting virulence mechanisms of several medically important pathogens.

Related Organizations
Keywords

Toll-Like Receptors, Animals, Drosophila Proteins, Drosophila, Receptors, Cell Surface, Infections, Immunity, Innate, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    320
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
320
Top 1%
Top 1%
Top 1%