Powered by OpenAIRE graph

SIGNALING PATHWAYS THAT ESTABLISH THE DORSAL-VENTRAL PATTERN OF THE DROSOPHILA EMBRYO

Authors: Anderson Kv; Morisato D;

SIGNALING PATHWAYS THAT ESTABLISH THE DORSAL-VENTRAL PATTERN OF THE DROSOPHILA EMBRYO

Abstract

The dorsal-ventral pattern of the Drosophila embryo is established by three sequential signaling pathways. Each pathway transmits spatial information by localizing the activity of an extracellular signal, which acts as a ligand for a broadly distributed transmembrane receptor. The components of the first two pathways are encoded by maternal effect genes, while the third pathway is specified by genes expressed in the zygote. During oogenesis, the oocyte transmits a signal to the surrounding follicle cells by the gurken-torpedo pathway. After fertilization, the initial asymmetry of the egg chamber is used by the spätzle-Toll pathway to generate within the embryo a nuclear gradient of the transcription factor Dorsal, which regulates the regional expression of a set of zygotic genes. On the dorsal side of the embryo, the decapentaplegic-punt/thick veins pathway then establishes patterning of the amnioserosa and dorsal ectoderm. Each pathway uses a distinct strategy to achieve spatial localization of signaling activity.

Related Organizations
Keywords

Membrane Glycoproteins, Zygote, Toll-Like Receptors, Cell Polarity, Genes, Insect, Receptors, Cell Surface, Transforming Growth Factor alpha, Insect Hormones, Transforming Growth Factors, Oocytes, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    337
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
337
Top 1%
Top 1%
Top 1%