Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 1989 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Molecular diversity of neurotoxins from Clostridium botulinum type D strains

Authors: K Moriishi; Bunei Syuto; Shuichiro Kubo; Keiji Oguma;

Molecular diversity of neurotoxins from Clostridium botulinum type D strains

Abstract

The molecular properties of Clostridium botulinum type D South African (D-SA) were compared with those of neurotoxins from type D strain 1873 (D-1873) and type C strains Stockholm and 6813. D-SA toxin, purified 610-fold from the culture supernatant in an overall yield of 30%, consisted of an intact peptide chain with a molecular weight of 140,000. Limited proteolysis of the toxin by trypsin formed a dichain structure consisting of a light chain (Mr, 50,000) and a heavy chain (Mr, 90,000) linked by a disulfide bond(s) and enhanced the lethal activity about fourfold. Antibodies against the D-SA toxin light chain reacted with D-1873 toxin but not with C1 toxins. On the other hand, antibodies against the heavy chain of D-SA toxin cross-reacted with type C strain Stockholm, D-1873, and type C strain 6813 toxins in that order. Amino-terminal sequences of heavy and light chains of D-SA and D-1873 toxins were similar but not identical. These results indicate that within the type D strains, neurotoxins differ in molecular structure and antigenicity.

Keywords

Antigens, Bacterial, Botulinum Toxins, Molecular Sequence Data, Neurotoxins, Clostridium botulinum, Amino Acid Sequence, Isoelectric Point, Amino Acids, Cross Reactions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
bronze