Powered by OpenAIRE graph

A short de novo synthesis of nucleoside analogs

Authors: Michael Meanwell; Steven M. Silverman; Johannes Lehmann; Bharanishashank Adluri; Yang Wang; Ryan Cohen; Louis-Charles Campeau; +1 Authors

A short de novo synthesis of nucleoside analogs

Abstract

Short path to a complex ring Nucleotide analogs are valuable tools and therapeutics because of their ability to interfere with processes such as DNA synthesis, which are vital to rapidly dividing cells and replicating viruses. These molecules are challenging to synthesize chemically. Meanwell et al. developed a “ribose last” synthetic strategy in which a fluorinated acyclic nucleic acid is formed by an l - or d -proline–catalyzed aldol reaction (see the Perspective by Miller). This intermediate can then be cyclized to yield the nucleic acid analog in one pot with control of anomeric conformation based on cyclization conditions. Nucleotide analogs accessible by this strategy include those with modifications at C2′ and C4′, purines and pyrimidines, and locked and protected products. Science , this issue p. 725 ; see also p. 623

Related Organizations
Keywords

Antineoplastic Agents, Nucleosides, Antiviral Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 1%